Cross diffusion and multiple slips on MHD Carreau fluid in a suspension of microorganisms over a variable thickness sheet

被引:15
|
作者
Prasad, P. D. [1 ]
Raju, C. S. K. [2 ]
Varma, S. V. K. [2 ]
Shehzad, S. A. [3 ]
Madaki, A. G. [4 ]
机构
[1] Sri Venkateswara Univ, Dept Math, Tirupati, Andhra Prades, India
[2] GITAM Univ, Dept Math, Bangalore 562163, Karnataka, India
[3] COMSATS Inst Informat Technol, Dept Math, Sahiwal 57000, Pakistan
[4] Univ Tun Hussein Onn Malaysia, Ctr Res Computat Math, Fac Sci Technol & Human Dev, Batu Pahat 86400, Johor, Malaysia
关键词
Non-Newtonian fluid; Carreau model; Nonlinear equations; Runge-Kutta Fehlberg method; STAGNATION POINT FLOW; BOUNDARY-LAYER EQUATIONS; FALKNER-SKAN FLOW; POWER-LAW FLUID; HEAT-TRANSFER; MASS-TRANSFER; STRETCHING SURFACE; HYDROMAGNETIC FLOW; SPHERICAL BUBBLES; MIXED CONVECTION;
D O I
10.1007/s40430-018-1171-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The present study investigated the variable viscosity and multiple slips on two-dimensional magnetohydrodynamic Carreau fluids due to slendering sheet filled with microorganisms. The Carreau model is used to characterize the behavior of the fluids with shearing thickening properties using the various values of exponent of power law. The diffusion-thermo and thermos diffusion effects are taken into account. The nonlinear sets of ordinary differential equations are treated numerically by shooting technique with Runge-Kutta Fehlberg method. Different parameters like magnetic interaction parameter M, Weissenberg number We, the index of power law m, various multiple slip parameters like the velocity slip parameter tau(1), the temperature jump parameter tau(2), the concentration tau(3), and the concentration jump parameter tau(4) are analyzed. The velocity, the skin friction, the rate of heat transport namely Nusselt number and rate of mass transport as Sherwood number are elaborated graphically and computed in tabular benchmark. The analysis found that the density of motile organism grows with the growing magnetic field parameter, diffusion-thermo number, thermo-diffusion number and Weissenberg number.
引用
收藏
页数:13
相关论文
共 50 条