Cross diffusion and multiple slips on MHD Carreau fluid in a suspension of microorganisms over a variable thickness sheet

被引:15
|
作者
Prasad, P. D. [1 ]
Raju, C. S. K. [2 ]
Varma, S. V. K. [2 ]
Shehzad, S. A. [3 ]
Madaki, A. G. [4 ]
机构
[1] Sri Venkateswara Univ, Dept Math, Tirupati, Andhra Prades, India
[2] GITAM Univ, Dept Math, Bangalore 562163, Karnataka, India
[3] COMSATS Inst Informat Technol, Dept Math, Sahiwal 57000, Pakistan
[4] Univ Tun Hussein Onn Malaysia, Ctr Res Computat Math, Fac Sci Technol & Human Dev, Batu Pahat 86400, Johor, Malaysia
关键词
Non-Newtonian fluid; Carreau model; Nonlinear equations; Runge-Kutta Fehlberg method; STAGNATION POINT FLOW; BOUNDARY-LAYER EQUATIONS; FALKNER-SKAN FLOW; POWER-LAW FLUID; HEAT-TRANSFER; MASS-TRANSFER; STRETCHING SURFACE; HYDROMAGNETIC FLOW; SPHERICAL BUBBLES; MIXED CONVECTION;
D O I
10.1007/s40430-018-1171-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The present study investigated the variable viscosity and multiple slips on two-dimensional magnetohydrodynamic Carreau fluids due to slendering sheet filled with microorganisms. The Carreau model is used to characterize the behavior of the fluids with shearing thickening properties using the various values of exponent of power law. The diffusion-thermo and thermos diffusion effects are taken into account. The nonlinear sets of ordinary differential equations are treated numerically by shooting technique with Runge-Kutta Fehlberg method. Different parameters like magnetic interaction parameter M, Weissenberg number We, the index of power law m, various multiple slip parameters like the velocity slip parameter tau(1), the temperature jump parameter tau(2), the concentration tau(3), and the concentration jump parameter tau(4) are analyzed. The velocity, the skin friction, the rate of heat transport namely Nusselt number and rate of mass transport as Sherwood number are elaborated graphically and computed in tabular benchmark. The analysis found that the density of motile organism grows with the growing magnetic field parameter, diffusion-thermo number, thermo-diffusion number and Weissenberg number.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] MULTIPLE SLIPS AND CHEMICAL REACTION EFFECTS ON MHD STAGNATION POINT FLOW OF CASSON FLUID OVER A STRETCHING SHEET WITH VISCOUS AND JOULES HEATING
    Kumar, G. Vinod
    Kumar, R. V. M. S. S. Kiran
    Varma, S. V. K.
    FRONTIERS IN HEAT AND MASS TRANSFER, 2018, 10
  • [22] Multiple slips and heat source effects on MHD stagnation point flow of casson fluid over a stretching sheet in the presence of chemical reaction
    Ramana, R. Mohana
    Raju, K. Venkateswara
    Kumar, J. Girish
    MATERIALS TODAY-PROCEEDINGS, 2022, 49 : 2306 - 2315
  • [23] Flow of Reiner–Philippoff fluid over a stretching sheet with variable thickness
    A. Ahmad
    M. Qasim
    S. Ahmed
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39 : 4469 - 4473
  • [24] MHD flow and heat transfer in a nanofluid over a slender elastic sheet with variable thickness
    Prasad, K. V.
    Vajravelu, K.
    Vaidya, Hanumesh
    Van Gorder, Robert A.
    RESULTS IN PHYSICS, 2017, 7 : 1462 - 1474
  • [25] Hall effect on MHD flow and heat transfer over a stretching sheet with variable thickness
    Prasad, K. V.
    Vajravelu, K.
    Vaidya, Hanumesh
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2016, 17 (04): : 288 - 297
  • [26] MHD Boundary Layer Flow of Carreau Fluid over a Convectively Heated Bidirectional Sheet with Non-Fourier Heat Flux and Variable Thermal Conductivity
    Lu, Dianchen
    Mohammad, Mutaz
    Ramzan, Muhammad
    Bilal, Muhammad
    Howari, Fares
    Suleman, Muhammad
    SYMMETRY-BASEL, 2019, 11 (05):
  • [27] Influence of Nonlinear Radiation and Cross Diffusion on MHD Flow of Casson and Walters-B Nanofluids Past a Variable Thickness Sheet
    Lakshmi, K. Bhagya
    Kumar, K. Anantha
    Reddy, J. V. Ramana
    Sugunamma, V.
    JOURNAL OF NANOFLUIDS, 2019, 8 (01) : 73 - 83
  • [28] On multiple solutions of non-Newtonian Carreau fluid flow over an inclined shrinking sheet
    Khan, Masood
    Sardar, Humara
    Gulzar, M. Mudassar
    Alshomrani, Ali Saleh
    RESULTS IN PHYSICS, 2018, 8 : 926 - 932
  • [29] VARIABLE THERMAL CONDUCTIVITY OF MHD TANGENT HYPERBOLIC FLUID FLOW OVER A STRETCHING SHEET
    Ali, Asghar
    Salahuddin, Taimoor
    Hussain, Rashida
    Maroof, Misbah
    JOURNAL OF SCIENCE AND ARTS, 2019, (03): : 753 - 764
  • [30] MHD non-Newtonian fluid flow over a slendering stretching sheet in the presence of cross-diffusion effects
    Babu, M. Jayachandra
    Sandeep, N.
    ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (03) : 2193 - 2201