Selection of a Covariance Kernel for a Gaussian Random Field Aimed for Modeling Global Optimization Problems

被引:0
|
作者
Zilinskas, Antanas [1 ]
Zhigljavsky, Anatoly [2 ]
Nekrutkin, Vladimir [3 ]
Kornikov, Vladimir [3 ]
机构
[1] Vilnius Univ, Inst Data Sci & Digital Technol, Akad 4, LT-08663 Vilnius, Lithuania
[2] Cardiff Univ, Sch Math, Cardiff CF24 1AG, S Glam, Wales
[3] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
关键词
D O I
10.1063/1.5090010
中图分类号
O59 [应用物理学];
学科分类号
摘要
Bayesian approach is actively used to develop global optimization algorithms aimed at expensive black box functions. One of the challenges in this approach is the selection of an appropriate model for the objective function. Normally, a Gaussian random field is chosen as a theoretical model. However, the problem of estimation of parameters, using objective function values, is not thoroughly researched. In this paper, we consider the behavior of maximum likelihood estimators (MLEs) of parameters of the homogeneous isotropic Gaussian random field with squared exponential covariance function. We also compare properties of exponential covariance function models.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Selection of a covariance function for a Gaussian random field aimed for modeling global optimization problems
    Anatoly Zhigljavsky
    Antanas Žilinskas
    Optimization Letters, 2019, 13 : 249 - 259
  • [2] Selection of a covariance function for a Gaussian random field aimed for modeling global optimization problems
    Zhigljavsky, Anatoly
    Zilinskas, Antanas
    OPTIMIZATION LETTERS, 2019, 13 (02) : 249 - 259
  • [3] Global optimization test problems based on random field composition
    Ramses Sala
    Niccolò Baldanzini
    Marco Pierini
    Optimization Letters, 2017, 11 : 699 - 713
  • [4] Global optimization test problems based on random field composition
    Sala, Ramses
    Baldanzini, Niccolo
    Pierini, Marco
    OPTIMIZATION LETTERS, 2017, 11 (04) : 699 - 713
  • [5] Kernel estimators for the long-run covariance matrix of a random field
    Kryzhanovskaya, N. Yu.
    RUSSIAN MATHEMATICAL SURVEYS, 2009, 64 (01) : 153 - 155
  • [6] Optimal Design for Prediction in Random Field Models via Covariance Kernel Expansions
    Gauthier, Bertrand
    Pronzato, Luc
    MODA 11 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2016, : 103 - 111
  • [7] GAUSSIAN MARKOV RANDOM FIELD PRIORS FOR INVERSE PROBLEMS
    Bardsley, Johnathan M.
    INVERSE PROBLEMS AND IMAGING, 2013, 7 (02) : 397 - 416
  • [8] On fixed-domain asymptotics and covariance tapering in Gaussian random field models
    Wang, Daqing
    Loh, Wei-Liem
    ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 238 - 269
  • [9] Combinatorial analysis of Feynman diagrams in problems with a Gaussian random field
    Kuchinskii, EZ
    Sadovskii, MV
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1998, 86 (02) : 367 - 374
  • [10] Combinatorial analysis of Feynman diagrams in problems with a Gaussian random field
    É. Z. Kuchinskii
    M. V. Sadovskii
    Journal of Experimental and Theoretical Physics, 1998, 86 : 367 - 374