Selection of a covariance function for a Gaussian random field aimed for modeling global optimization problems

被引:13
|
作者
Zhigljavsky, Anatoly [2 ]
Zilinskas, Antanas [1 ]
机构
[1] Vilnius Univ, Inst Data Sci & Digital Technol, Akad 4, LT-08663 Vilnius, Lithuania
[2] Cardiff Univ, Sch Math, Cardiff CF24 1AG, S Glam, Wales
关键词
Global optimization; Bayesian approach; Statistical models; Gaussian random fields; Parameters' estimation; ALGORITHM;
D O I
10.1007/s11590-018-1372-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Bayesian approach is actively used to develop global optimization algorithms aimed at expensive black box functions. One of the challenges in this approach is the selection of an appropriate model for the objective function. Normally, a Gaussian random field is chosen as a theoretical model. However, the problem of estimation of parameters, using objective function values, is not thoroughly researched. In this paper, we consider the behavior of the maximum likelihood estimators of parameters of the homogeneous isotropic Gaussian random field with squared exponential covariance function. We also compare properties of exponential covariance function models.
引用
收藏
页码:249 / 259
页数:11
相关论文
共 50 条
  • [1] Selection of a covariance function for a Gaussian random field aimed for modeling global optimization problems
    Anatoly Zhigljavsky
    Antanas Žilinskas
    [J]. Optimization Letters, 2019, 13 : 249 - 259
  • [2] Selection of a Covariance Kernel for a Gaussian Random Field Aimed for Modeling Global Optimization Problems
    Zilinskas, Antanas
    Zhigljavsky, Anatoly
    Nekrutkin, Vladimir
    Kornikov, Vladimir
    [J]. 14TH INTERNATIONAL GLOBAL OPTIMIZATION WORKSHOP (LEGO), 2019, 2070
  • [3] ASYMPTOTIC DISTRIBUTIONS OF MINIMUM NORM QUADRATIC ESTIMATORS OF THE COVARIANCE FUNCTION OF A GAUSSIAN RANDOM FIELD
    STEIN, M
    [J]. ANNALS OF STATISTICS, 1989, 17 (03): : 980 - 1000
  • [4] Testing the covariance function of stationary Gaussian random fields
    Taheriyoun, Ali Reza
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (03) : 606 - 613
  • [5] Global optimization test problems based on random field composition
    Ramses Sala
    Niccolò Baldanzini
    Marco Pierini
    [J]. Optimization Letters, 2017, 11 : 699 - 713
  • [6] Global optimization test problems based on random field composition
    Sala, Ramses
    Baldanzini, Niccolo
    Pierini, Marco
    [J]. OPTIMIZATION LETTERS, 2017, 11 (04) : 699 - 713
  • [7] A Constructive Density Function Path Leading to Global Coverage Strategy for A Gaussian Random Field
    Yang, Yuxing
    Sue, Mao
    Fan, Huijin
    Liu, Lei
    Wang, Bo
    [J]. 2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 249 - 254
  • [8] GAUSSIAN MARKOV RANDOM FIELD PRIORS FOR INVERSE PROBLEMS
    Bardsley, Johnathan M.
    [J]. INVERSE PROBLEMS AND IMAGING, 2013, 7 (02) : 397 - 416
  • [9] On fixed-domain asymptotics and covariance tapering in Gaussian random field models
    Wang, Daqing
    Loh, Wei-Liem
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 238 - 269
  • [10] Gaussian likelihood inference on data from trans-Gaussian random fields with Matern covariance function
    Yan, Yuan
    Genton, Marc G.
    [J]. ENVIRONMETRICS, 2018, 29 (5-6)