Selection of a Covariance Kernel for a Gaussian Random Field Aimed for Modeling Global Optimization Problems

被引:0
|
作者
Zilinskas, Antanas [1 ]
Zhigljavsky, Anatoly [2 ]
Nekrutkin, Vladimir [3 ]
Kornikov, Vladimir [3 ]
机构
[1] Vilnius Univ, Inst Data Sci & Digital Technol, Akad 4, LT-08663 Vilnius, Lithuania
[2] Cardiff Univ, Sch Math, Cardiff CF24 1AG, S Glam, Wales
[3] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
来源
14TH INTERNATIONAL GLOBAL OPTIMIZATION WORKSHOP (LEGO) | 2019年 / 2070卷
关键词
D O I
10.1063/1.5090010
中图分类号
O59 [应用物理学];
学科分类号
摘要
Bayesian approach is actively used to develop global optimization algorithms aimed at expensive black box functions. One of the challenges in this approach is the selection of an appropriate model for the objective function. Normally, a Gaussian random field is chosen as a theoretical model. However, the problem of estimation of parameters, using objective function values, is not thoroughly researched. In this paper, we consider the behavior of maximum likelihood estimators (MLEs) of parameters of the homogeneous isotropic Gaussian random field with squared exponential covariance function. We also compare properties of exponential covariance function models.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Dimensional decision covariance colony predation algorithm: global optimization and high−dimensional feature selection
    Boyang Xu
    Ali Asghar Heidari
    Zhennao Cai
    Huiling Chen
    Artificial Intelligence Review, 2023, 56 : 11415 - 11471
  • [42] Graph-structured variable selection with Gaussian Markov random field horseshoe prior
    Denis, Marie
    Tadesse, Mahlet G.
    STATISTICAL MODELLING, 2025,
  • [43] Random following ant colony optimization: Continuous and binary variants for global optimization and feature selection
    Zhou, Xinsen
    Gui, Wenyong
    Heidari, Ali Asghar
    Cai, Zhennao
    Liang, Guoxi
    Chen, Huiling
    APPLIED SOFT COMPUTING, 2023, 144
  • [44] Surrogate-Assisted Evolutionary Multi-Objective Optimization of Medium-Scale Problems by Random Grouping and Sparse Gaussian Modeling
    Wu, Haofeng
    Jin, Yaochu
    Gao, Kailai
    Ding, Jinliang
    Cheng, Ran
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (05): : 3263 - 3278
  • [45] A Constructive Density Function Path Leading to Global Coverage Strategy for A Gaussian Random Field
    Yang, Yuxing
    Sue, Mao
    Fan, Huijin
    Liu, Lei
    Wang, Bo
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 249 - 254
  • [46] Particle guided metaheuristic algorithm for global optimization and feature selection problems
    Kwakye, Benjamin Danso
    Li, Yongjun
    Mohamed, Halima Habuba
    Baidoo, Evans
    Asenso, Theophilus Quachie
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 248
  • [47] An improved gorilla troops optimizer for global optimization problems and feature selection
    Mostafa, Reham R.
    Gaheen, Marwa A.
    Abd ElAziz, Mohamed
    Al-Betar, Mohammed Azmi
    Ewees, Ahmed A.
    KNOWLEDGE-BASED SYSTEMS, 2023, 269
  • [48] Artificial Ecosystem-Based Optimization with Dwarf Mongoose Optimization for Feature Selection and Global Optimization Problems
    Al-Shourbaji, Ibrahim
    Kachare, Pramod
    Fadlelseed, Sajid
    Jabbari, Abdoh
    Hussien, Abdelazim G.
    Al-Saqqar, Faisal
    Abualigah, Laith
    Alameen, Abdalla
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [49] Artificial Ecosystem-Based Optimization with Dwarf Mongoose Optimization for Feature Selection and Global Optimization Problems
    Ibrahim Al-Shourbaji
    Pramod Kachare
    Sajid Fadlelseed
    Abdoh Jabbari
    Abdelazim G. Hussien
    Faisal Al-Saqqar
    Laith Abualigah
    Abdalla Alameen
    International Journal of Computational Intelligence Systems, 16
  • [50] Single-objective and multiobjective evolutionary optimization assisted by Gaussian random field metamodels
    Emmerich, Michael T. M.
    Giannakoglou, Kyriakos C.
    Naujoks, Boris
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (04) : 421 - 439