Random Walk on the High-Dimensional IIC

被引:15
|
作者
Heydenreich, Markus [1 ,2 ]
van der Hofstad, Remco [3 ]
Hulshof, Tim [4 ,5 ]
机构
[1] Leiden Univ, Inst Math, NL-2300 RA Leiden, Netherlands
[2] Ctr Wiskunde & Informat, NL-1090 GB Amsterdam, Netherlands
[3] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[4] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[5] Univ British Columbia, Pacific Inst Math Sci, Vancouver, BC V5Z 1M9, Canada
关键词
INCIPIENT INFINITE CLUSTER; OUT ORIENTED PERCOLATION; LACE EXPANSION; BEHAVIOR; PROBABILITY; EXPONENTS; FRACTALS; GRAPHS; RANGE;
D O I
10.1007/s00220-014-1931-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the asymptotic behavior of the exit times of random walk from Euclidean balls around the origin of the incipient infinite cluster in a manner inspired by Kumagai and Misumi (J Theor Probab 21:910-935, 2008). We do this by getting bounds on the effective resistance between the origin and the boundary of these Euclidean balls. We show that the geometric properties of long-range percolation clusters are significantly different from those of finite-range clusters. We also study the behavior of random walk on the backbone of the IIC and we prove that the Alexander-Orbach conjecture holds for the incipient infinite cluster in high dimensions, both for long-range percolation and for finite-range percolation.
引用
收藏
页码:57 / 115
页数:59
相关论文
共 50 条
  • [41] COMPLEXITY OF RANDOM SMOOTH FUNCTIONS ON THE HIGH-DIMENSIONAL SPHERE
    Auffinger, Antonio
    Ben Arous, Gerard
    [J]. ANNALS OF PROBABILITY, 2013, 41 (06): : 4214 - 4247
  • [42] High-dimensional outlier detection using random projections
    P. Navarro-Esteban
    J. A. Cuesta-Albertos
    [J]. TEST, 2021, 30 : 908 - 934
  • [43] Aspects of a Phase Transition in High-Dimensional Random Geometry
    Prueser, Axel
    Kondor, Imre
    Engel, Andreas
    [J]. ENTROPY, 2021, 23 (07)
  • [44] High-dimensional outlier detection using random projections
    Navarro-Esteban, P.
    Cuesta-Albertos, J. A.
    [J]. TEST, 2021, 30 (04) : 908 - 934
  • [45] CLIQUES IN HIGH-DIMENSIONAL GEOMETRIC INHOMOGENEOUS RANDOM GRAPHS
    Friedrich, Tobias
    Goebel, Andreas
    Katzmann, Maximilian
    Schiller, Leon
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (02) : 1943 - 2000
  • [46] Minimax Rates for High-Dimensional Random Tessellation Forests
    O'Reilly, Eliza
    Tran, Ngoc Mai
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [47] High-Dimensional Linear Models: A Random Matrix Perspective
    Jamshid Namdari
    Debashis Paul
    Lili Wang
    [J]. Sankhya A, 2021, 83 (2): : 645 - 695
  • [48] Recursive Functions in High-Dimensional Computing with Random Vectors
    Poikonen, Jussi H.
    Lehtonen, Eero
    Laiho, Mika
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 5194 - 5201
  • [49] High-Dimensional Mahalanobis Distances of Complex Random Vectors
    Dai, Deliang
    Liang, Yuli
    [J]. MATHEMATICS, 2021, 9 (16)
  • [50] HIGH-DIMENSIONAL SPARSE COVARIANCE ESTIMATION FOR RANDOM SIGNALS
    Nasif, Ahmed O.
    Tian, Zhi
    Ling, Qing
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 4658 - 4662