High-dimensional outlier detection using random projections

被引:0
|
作者
P. Navarro-Esteban
J. A. Cuesta-Albertos
机构
[1] Universidad de Cantabria,Departmento de Matemáticas, Estadística y Computación
来源
TEST | 2021年 / 30卷
关键词
Outlier detection; Multivariate data; High-dimensional data; Random projections; Sequential analysis; 62H15; 62L10;
D O I
暂无
中图分类号
学科分类号
摘要
There exist multiple methods to detect outliers in multivariate data in the literature, but most of them require to estimate the covariance matrix. The higher the dimension, the more complex the estimation of the matrix becoming impossible in high dimensions. In order to avoid estimating this matrix, we propose a novel random projection-based procedure to detect outliers in Gaussian multivariate data. It consists in projecting the data in several one-dimensional subspaces where an appropriate univariate outlier detection method, similar to Tukey’s method but with a threshold depending on the initial dimension and the sample size, is applied. The required number of projections is determined using sequential analysis. Simulated and real datasets illustrate the performance of the proposed method.
引用
收藏
页码:908 / 934
页数:26
相关论文
共 50 条
  • [1] High-dimensional outlier detection using random projections
    Navarro-Esteban, P.
    Cuesta-Albertos, J. A.
    [J]. TEST, 2021, 30 (04) : 908 - 934
  • [2] Local projections for high-dimensional outlier detection
    Thomas Ortner
    Peter Filzmoser
    Maia Rohm
    Sarka Brodinova
    Christian Breiteneder
    [J]. METRON, 2021, 79 : 189 - 206
  • [3] Local projections for high-dimensional outlier detection
    Ortner, Thomas
    Filzmoser, Peter
    Rohm, Maia
    Brodinova, Sarka
    Breiteneder, Christian
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2021, 79 (02): : 189 - 206
  • [4] Outlier detection for high-dimensional data
    Ro, Kwangil
    Zou, Changliang
    Wang, Zhaojun
    Yin, Guosheng
    [J]. BIOMETRIKA, 2015, 102 (03) : 589 - 599
  • [5] Outlier Detection Using Structural Scores in a High-Dimensional Space
    Li, Xiaojie
    Lv, Jiancheng
    Yi, Zhang
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (05) : 2302 - 2310
  • [6] Random projections for high-dimensional optimization problems
    Vu, Ky
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2017, 15 (03): : 327 - 328
  • [7] High-Dimensional Clustering via Random Projections
    Anderlucci, Laura
    Fortunato, Francesca
    Montanari, Angela
    [J]. JOURNAL OF CLASSIFICATION, 2022, 39 (01) : 191 - 216
  • [8] High-Dimensional Clustering via Random Projections
    Laura Anderlucci
    Francesca Fortunato
    Angela Montanari
    [J]. Journal of Classification, 2022, 39 : 191 - 216
  • [9] Random projections for high-dimensional optimization problems
    Ky Vu
    [J]. 4OR, 2017, 15 : 327 - 328
  • [10] Subspace rotations for high-dimensional outlier detection
    Chung, Hee Cheol
    Ahn, Jeongyoun
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 183