Brain Tumor Segmentation Using Deep Fully Convolutional Neural Networks

被引:17
|
作者
Kim, Geena [1 ]
机构
[1] Regis Univ, Coll Comp & Informat Sci, Denver, CO 80221 USA
关键词
Brain Tumor Segmentation; Fully convolutional neural networks; Deep convolutional neural networks;
D O I
10.1007/978-3-319-75238-9_30
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this study, brain tumor substructures are segmented using 2D fully convolutional neural networks. A number of modifications such as double convolution layers, inception modules, and dense modules were added to a U-Net to achieve a deep architecture and test if the increased depth improves the performance. The experiments show that the deep architectures improve the performance. Also, the performance is enhanced from ensembling across the models trained on images in different orientations and ensembling across the models with different architectures. Even without any data augmentation, the ensembled model achieves a competitive performance and generalizes well on a new dataset. The resulting mean 3D Dice scores (ET/WT/TC) on the BRATS17 validation and test sets are 0.75/0.88/0.73 and 0.72/0.86/0.73.
引用
收藏
页码:344 / 357
页数:14
相关论文
共 50 条
  • [41] Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images
    Ben Naceur, Mostefa
    Saouli, Rachida
    Akil, Mohamed
    Kachouri, Rostom
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 166 : 39 - 49
  • [42] Automatic Tumor Segmentation with Deep Convolutional Neural Networks for Radiotherapy Applications
    Yan Wang
    Chen Zu
    Guangliang Hu
    Yong Luo
    Zongqing Ma
    Kun He
    Xi Wu
    Jiliu Zhou
    [J]. Neural Processing Letters, 2018, 48 : 1323 - 1334
  • [43] Exudate Segmentation using Fully Convolutional Neural Networks and Inception Modules
    Chudzik, Piotr
    Majumdar, Somshubra
    Caliva, Francesco
    Al-Diri, Bashir
    Hunter, Andrew
    [J]. MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [44] Forest Fires Segmentation using Deep Convolutional Neural Networks
    Ghali, Rafik
    Akhloufi, Moulay A.
    Jmal, Marwa
    Mseddi, Wided Souidene
    Attia, Rabah
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 2109 - 2114
  • [45] Fully Automated Hippocampus Segmentation using T2-informed Deep Convolutional Neural Networks
    Sackl, Maximilian
    Tinauer, Christian
    Urschler, Martin
    Enzinger, Christian
    Stollberger, Rudolf
    Ropele, Stefan
    [J]. NEUROIMAGE, 2024, 298
  • [46] The Multimodal Brain Tumor Image Segmentation Based On Convolutional Neural Networks
    Wang Mengqiao
    Yang Jie
    Chen Yilei
    Wang Hao
    [J]. 2017 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA), 2017, : 336 - 339
  • [47] Auto -segmentation of pancreatic tumor in multi -parametric MRI using deep convolutional neural networks
    Liang, Ying
    Schott, Diane
    Zhang, Ying
    Wang, Zhiwu
    Nasief, Haidy
    Paulson, Eric
    Hall, William
    Knechtges, Paul
    Erickson, Beth
    Li, X. Allen
    [J]. RADIOTHERAPY AND ONCOLOGY, 2020, 145 : 193 - 200
  • [48] A Deep Learning Approach for Brain Tumor Classification and Segmentation Using a Multiscale Convolutional Neural Network
    Diaz-Pernas, Francisco Javier
    Martinez-Zarzuela, Mario
    Anton-Rodriguez, Miriam
    Gonzalez-Ortega, David
    [J]. HEALTHCARE, 2021, 9 (02)
  • [49] Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks
    Dong, Hao
    Yang, Guang
    Liu, Fangde
    Mo, Yuanhan
    Guo, Yike
    [J]. MEDICAL IMAGE UNDERSTANDING AND ANALYSIS (MIUA 2017), 2017, 723 : 506 - 517
  • [50] Improvement of Automatic Glioma Brain Tumor Detection Using Deep Convolutional Neural Networks
    Altameem, Ayman
    Mallikarjuna, Basetty
    Saudagar, Abdul Khader Jilani
    Sharma, Meenakshi
    Poonia, Ramesh Chandra
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (06) : 530 - 544