Forest Fires Segmentation using Deep Convolutional Neural Networks

被引:21
|
作者
Ghali, Rafik [1 ,3 ]
Akhloufi, Moulay A. [1 ]
Jmal, Marwa [2 ]
Mseddi, Wided Souidene [3 ]
Attia, Rabah [3 ]
机构
[1] Univ Moncton, Dept Comp Sci, Percept Robot & Intelligent Machines Res Grp PRIM, Moncton, NB, Canada
[2] Telnet Holding, Telnet Innovat Labs, Ariana, Tunisia
[3] Univ Carthage, Ecole Polytech Tunisie, SERCOM Lab, La Marsa, Tunisia
基金
加拿大自然科学与工程研究理事会;
关键词
Forest fire detection; Forest fire segmentation; Deep learning; U-2-Net; U-Net; EfficientSeg; VISION;
D O I
10.1109/SMC52423.2021.9658905
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Forest fires are among the most dangerous type of natural disasters since they affect numerous aspects of life, such as natural ecosystems, economy, and human lives. Various vision-based fire detection methods have been proposed to segment fire pixels and detect fire at an early stage. The challenge here is to overcome the limitations of the majority of these methods mainly false detection of fire pixels. For such, we propose in this paper, three deep convolutional networks, U-Net, U-2-Net, and EfficientSeg to segment forest fire pixels and detect fire areas. One of our main contributions is the variation of loss functions of all models. The three models show an excellent performance in terms of accuracy and F1-score, and proved their reliability to segment fire pixels and detect the precise shape of forest fire areas.
引用
收藏
页码:2109 / 2114
页数:6
相关论文
共 50 条
  • [1] GLIOBLASTOMA TUMOR SEGMENTATION USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Liu, Tiffany Ting
    Achrol, Achal
    Rubin, Daniel
    Chang, Steven
    [J]. NEURO-ONCOLOGY, 2017, 19 : 147 - 147
  • [2] Forest Species Recognition using Deep Convolutional Neural Networks
    Hafemann, Luiz G.
    Oliveira, Luiz S.
    Cavalin, Paulo
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1103 - 1107
  • [3] Fast and robust segmentation of the striatum using deep convolutional neural networks
    Choi, Hongyoon
    Jin, Kyong Hwan
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2016, 274 : 146 - 153
  • [4] Tongue Segmentation and Color Classification Using Deep Convolutional Neural Networks
    Yan, Bo
    Zhang, Sheng
    Yang, Zijiang
    Su, Hongyi
    Zheng, Hong
    [J]. MATHEMATICS, 2022, 10 (22)
  • [5] Brain Tumor Segmentation Using Deep Fully Convolutional Neural Networks
    Kim, Geena
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 344 - 357
  • [6] Detection and Segmentation of Rice Diseases Using Deep Convolutional Neural Networks
    Rai C.K.
    Pahuja R.
    [J]. SN Computer Science, 4 (5)
  • [7] Eye Tracking for Deep Learning Segmentation Using Convolutional Neural Networks
    Stember, J. N.
    Celik, H.
    Krupinski, E.
    Chang, P. D.
    Mutasa, S.
    Wood, B. J.
    Lignelli, A.
    Moonis, G.
    Schwartz, L. H.
    Jambawalikar, S.
    Bagci, U.
    [J]. JOURNAL OF DIGITAL IMAGING, 2019, 32 (04) : 597 - 604
  • [8] Using Deep Convolutional Neural Networks for Neonatal Brain Image Segmentation
    Ding, Yang
    Acosta, Rolando
    Enguix, Vicente
    Suffren, Sabrina
    Ortmann, Janosch
    Luck, David
    Dolz, Jose
    Lodygensky, Gregory A.
    [J]. FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [9] SMSnet: Semantic Motion Segmentation using Deep Convolutional Neural Networks
    Vertens, Johan
    Valada, Abhinav
    Burgard, Wolfram
    [J]. 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 582 - 589
  • [10] Automated Segmentation of Geographic Atrophy Using Deep Convolutional Neural Networks
    Hu, Zhihong
    Wang, Ziyuan
    Sadda, SriniVas R.
    [J]. MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575