Segmentation of the surfaces of the retinal layer from OCT images

被引:0
|
作者
Haeker, Mona [1 ]
Abramoff, Michael
Kardon, Randy
Sonka, Milan
机构
[1] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
[2] Univ Iowa, Dept Biomed Engn, Iowa City, IA 52242 USA
[3] Univ Iowa, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We have developed a method for the automated segmentation of the internal limiting membrane and the pigment epithelium in 3-D OCT retinal images. Each surface was found as a minimum s-t cut from a geometric graph constructed from edge/regional information and a priori-determined surface constraints. Our approach was tested on 18 3-D data sets (9 from patients with normal optic discs and 9 from patients with papilledema) obtained using a Stratus OCT-3 scanner. Qualitative analysis of surface detection correctness indicates that our method consistently found the correct surfaces and outperformed the proprietary algorithm used in the Stratus OCT-3 scanner. For example, for the internal limiting membrane, 4% of the 2-D scans had minor failures with no major failures using our approach, but 19% of the 2-D scans using the Stratus OCT-3 scanner had minor or complete failures.
引用
收藏
页码:800 / 807
页数:8
相关论文
共 50 条
  • [41] Towards Automatic Glaucoma Assessment: An Encoder-decoder CNN for Retinal Layer Segmentation in Rodent OCT images
    del Amor, Rocio
    Morales, Sandra
    Colomer, Adrian
    Mossi, Jose M.
    Woldbye, David
    Klemp, Kristian
    Larsen, Michael
    Naranjo, Valery
    [J]. 2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [42] Graph Attention U-Net for Retinal Layer Surface Detection and Choroid Neovascularization Segmentation in OCT Images
    Shen, Yuhe
    Li, Jiang
    Zhu, Weifang
    Yu, Kai
    Wang, Meng
    Peng, Yuanyuan
    Zhou, Yi
    Guan, Liling
    Chen, Xinjian
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (11) : 3140 - 3154
  • [43] HDB-Net: hierarchical dual-branch network for retinal layer segmentation in diseased OCT images
    Chen, Yu
    Zhang, XueHe
    Yang, Jiahui
    Han, Gang
    Zhang, He
    Lai, MingZhu
    Zhao, Jie
    [J]. BIOMEDICAL OPTICS EXPRESS, 2024, 15 (09): : 5359 - 5383
  • [44] Automatic segmentation of retinal layer boundaries in OCT images using multiscale convolutional neural network and graph search
    Hu, Kai
    Shen, Binwei
    Zhang, Yuan
    Cao, Chunhong
    Xiao, Fen
    Gao, Xieping
    [J]. NEUROCOMPUTING, 2019, 365 : 302 - 313
  • [45] Automatic Robust Segmentation of Retinal Layers in OCT Images with Refinement Stages
    Gonzalez-Lopez, Ana
    Ortega, Marcos
    Penedo, Manuel G.
    Charlon, Pablo
    [J]. IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT II, 2014, 8815 : 337 - 345
  • [46] Deep choroid layer segmentation using hybrid features extraction from OCT images
    Saleha Masood
    Saba Ghazanfar Ali
    Xiangning Wang
    Afifa Masood
    Ping Li
    Huating Li
    Younhyun Jung
    Bin Sheng
    Jinman Kim
    [J]. The Visual Computer, 2024, 40 : 2775 - 2792
  • [47] Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images
    Vermeer, K. A.
    van der Schoot, J.
    Lemij, H. G.
    de Boer, J. F.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2011, 2 (06): : 1743 - 1756
  • [48] Deep choroid layer segmentation using hybrid features extraction from OCT images
    Masood, Saleha
    Ali, Saba Ghazanfar
    Wang, Xiangning
    Masood, Afifa
    Li, Ping
    Li, Huating
    Jung, Younhyun
    Sheng, Bin
    Kim, Jinman
    [J]. VISUAL COMPUTER, 2024, 40 (04): : 2775 - 2792
  • [49] Retinal layer thickness measurement using automated retinal segmentation with SD-OCT
    Soubrane, Gisele
    Aknin, Isabelle
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (07)
  • [50] Retinal Layer Segmentation in Optical Coherence Tomography Images
    Dodo, Bashir Isa
    Li, Yongmin
    Kaba, Djibril
    Liu, Xiaohui
    [J]. IEEE ACCESS, 2019, 7 : 152388 - 152398