Segmentation of the surfaces of the retinal layer from OCT images

被引:0
|
作者
Haeker, Mona [1 ]
Abramoff, Michael
Kardon, Randy
Sonka, Milan
机构
[1] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
[2] Univ Iowa, Dept Biomed Engn, Iowa City, IA 52242 USA
[3] Univ Iowa, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We have developed a method for the automated segmentation of the internal limiting membrane and the pigment epithelium in 3-D OCT retinal images. Each surface was found as a minimum s-t cut from a geometric graph constructed from edge/regional information and a priori-determined surface constraints. Our approach was tested on 18 3-D data sets (9 from patients with normal optic discs and 9 from patients with papilledema) obtained using a Stratus OCT-3 scanner. Qualitative analysis of surface detection correctness indicates that our method consistently found the correct surfaces and outperformed the proprietary algorithm used in the Stratus OCT-3 scanner. For example, for the internal limiting membrane, 4% of the 2-D scans had minor failures with no major failures using our approach, but 19% of the 2-D scans using the Stratus OCT-3 scanner had minor or complete failures.
引用
收藏
页码:800 / 807
页数:8
相关论文
共 50 条
  • [31] A.I. Pipeline for Accurate Retinal Layer Segmentation Using OCT 3D Images
    Goswami, Mayank
    [J]. PHOTONICS, 2023, 10 (03)
  • [32] Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks
    Morales, Sandra
    Colomer, Adrian
    Mossi, Jose M.
    del Amor, Rocio
    Woldbye, David
    Klemp, Kristian
    Larsen, Michael
    Naranjo, Valery
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 198 (198)
  • [33] A robust segmentation of retinal fluids from OCT images using MCFAR-net
    Pavani, P. Geetha
    Biswal, B.
    Kandula, Srinivasa Rao
    Biswal, P. K.
    Siddartha, G.
    Niranjan, T.
    Subrahmanyam, Bala
    [J]. NEUROCOMPUTING, 2024, 599
  • [34] Joint deep matching model of OCT retinal layer segmentation
    Yang, Mei
    Zheng, Yuanjie
    Jia, Weikuan
    He, Yunlong
    Che, Tongtong
    Cong, Jinyu
    [J]. Zheng, Yuanjie (zhengyuanjie@gmail.com); Jia, Weikuan (jwk_1982@163.com), 1600, Tech Science Press (63): : 1485 - 1498
  • [35] Multicenter reliability of semiautomatic retinal layer segmentation using OCT
    Oberwahrenbrock, Timm
    Traber, Ghislaine L.
    Lukas, Sebastian
    Gabilondo, Inigo
    Nolan, Rachel
    Songster, Christopher
    Balk, Lisanne
    Petzold, Axel
    Paul, Friedemann
    Villoslada, Pablo
    Brandt, Alexander U.
    Green, Ari J.
    Schippling, Sven
    [J]. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION, 2018, 5 (03):
  • [36] Self-attention CNN for retinal layer segmentation in OCT
    Cao, Guogang
    Wu, Yan
    Peng, Zeyu
    Zhou, Zhilin
    Dai, Cuixia
    [J]. BIOMEDICAL OPTICS EXPRESS, 2024, 15 (03) : 1605 - 1617
  • [37] Joint Deep Matching Model of OCT Retinal Layer Segmentation
    Yang, Mei
    Zheng, Yuanjie
    Jia, Weikuan
    He, Yunlong
    Che, Tongtong
    Cong, Jinyu
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 63 (03): : 1485 - 1498
  • [38] Automated segmentation of retinal nerve fiber layer excluding retinal blood vessels: integrating OCT and OCT Angiography
    Airaldi, Matteo
    Oakley, Jonathan D.
    Bochicchio, Sara
    Dipinto, Angelica
    Prandoni, Simona
    Staurenghi, Giovanni
    Triolo, Giacinto
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [39] Wavelet attention network for the segmentation of layer structures on OCT images
    Wang, Cong
    Gan, Meng
    [J]. BIOMEDICAL OPTICS EXPRESS, 2022, 13 (12) : 6167 - 6181
  • [40] Choroidal layer segmentation in OCT images by a boundary enhancement network
    Wu, Wenjun
    Gong, Yan
    Hao, Huaying
    Zhang, Jiong
    Su, Pan
    Yan, Qifeng
    Ma, Yuhui
    Zhao, Yitian
    [J]. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10