Short term wind speed estimation in Saudi Arabia

被引:25
|
作者
Mohandes, Mohamed Ahmed [1 ]
Rehman, Shafiqur [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Elect Engn, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Res Inst, Engn Res Ctr, Dhahran 31261, Saudi Arabia
关键词
Wind speed estimation; Particle swarm optimization (PSO); Abductory induction mechanism (AIM); Persistence (PER) model; Artificial neural networks (ANN); SOLAR-RADIATION; WEIBULL PARAMETERS; POWER-GENERATION; PREDICTION; ENERGY; MODEL; TURBINE;
D O I
10.1016/j.jweia.2014.02.007
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, three methods are used for the prediction of wind speed, 12 h ahead, based on 72 h previous wind speed values at three locations viz. Rawdat Bin Habbas (inland north), Juaymah (east coast), and Dhulom (inland western region) in Saudi Arabia. These methods are Particle Swarm Optimization (PSO), Abductory Induction Mechanism (AIM), and the Persistence (PER) model. The available data at each site was divided into three consecutive groups. The first 50% was used for training, the second 25% for validation, and the remaining 25% for testing. The validation data set was used to select the network architecture and other user defined parameters. The testing data was used only to assess the performance of the networks on future unseen data that has not been used for training or model selection. For each of the three methods, each of 12 networks was trained to produce the wind speed at one of the next 12 h. Relatively, Close agreements were found between the predicted and measured hourly mean wind speed for all three locations with coefficient of correlation R-2 values between 81.7% and 98.0% for PSO, between 79.8% and 98.5% for AIM and between 59.5% and 88.4% for persistence model. Both PSO and AIM methods underestimated WS values during most hours with an average value of 0.036 m/s and 0.02 m/s, respectively. However, persistence model overestimated the WS by an average value of 0.51 m/s. It is shown that the two developed models outperformed the persistence model on predicting wind speed 12 h ahead of time with slight advantage to the PSO method. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:37 / 53
页数:17
相关论文
共 50 条
  • [31] An adaptive hybrid model for short term wind speed forecasting
    Zhang, Jinliang
    Wei, Yiming
    Tan, Zhongfu
    [J]. ENERGY, 2020, 190
  • [32] Short-term Wind Speed Forecasting with ARIMA Model
    Radziukynas, Virginijus
    Klementavicius, Arturas
    [J]. 2014 55TH INTERNATIONAL SCIENTIFIC CONFERENCE ON POWER AND ELECTRICAL ENGINEERING OF RIGA TECHNICAL UNIVERSITY (RTUCON), 2014, : 145 - 149
  • [33] A Hybrid Method for Short-Term Wind Speed Forecasting
    Zhang, Jinliang
    Wei, YiMing
    Tan, Zhong-fu
    Wang, Ke
    Tian, Wei
    [J]. SUSTAINABILITY, 2017, 9 (04):
  • [34] A hybrid technique for short-term wind speed prediction
    Hu, Jianming
    Wang, Jianzhou
    Ma, Kailiang
    [J]. ENERGY, 2015, 81 : 563 - 574
  • [35] A Hybrid Approach for Short-Term Forecasting of Wind Speed
    Tatinati, Sivanagaraja
    Veluvolu, Kalyana C.
    [J]. SCIENTIFIC WORLD JOURNAL, 2013,
  • [36] Performance Evaluation of Short Term Wind Speed Prediction Techniques
    Sreelakshmi, K.
    Kumar, P. Ramakanth
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2008, 8 (08): : 162 - 169
  • [37] Chaotic Prediction Method of Short-Term Wind Speed
    Xiao Hongfei
    Ding Tao
    [J]. PROCEEDINGS OF THE 2011 INTERNATIONAL CONFERENCE ON INFORMATICS, CYBERNETICS, AND COMPUTER ENGINEERING (ICCE2011), VOL 3: COMPUTER NETWORKS AND ELECTRONIC ENGINEERING, 2011, 112 : 479 - +
  • [38] A hybrid system for short-term wind speed forecasting
    He, Qingqing
    Wang, Jianzhou
    Lu, Haiyan
    [J]. APPLIED ENERGY, 2018, 226 : 756 - 771
  • [39] Short-Term Visual Outcomes of Boston Keratoprosthesis Type I in Saudi Arabia
    Al Arfaj, Khalid
    Hantera, Mohamed
    [J]. MIDDLE EAST AFRICAN JOURNAL OF OPHTHALMOLOGY, 2012, 19 (01) : 88 - 92
  • [40] Forecasting Wind Speed using Artificial Neural Networks - A Case Study of a Potential Location of Saudi Arabia
    Faniband, Yunus Parvej
    Shaahid, S. M.
    [J]. 2020 5TH INTERNATIONAL CONFERENCE ON ADVANCES ON CLEAN ENERGY RESEARCH (ICACER 2020), 2020, 173