A Hybrid Method for Short-Term Wind Speed Forecasting

被引:26
|
作者
Zhang, Jinliang [1 ,2 ]
Wei, YiMing [2 ,3 ]
Tan, Zhong-fu [1 ]
Wang, Ke [2 ,3 ]
Tian, Wei [4 ]
机构
[1] North China Elect Power Univ, Sch Econ & Management, Beijing 102206, Peoples R China
[2] Beijing Inst Technol, Ctr Energy & Environm Policy Res, Beijing 100181, Peoples R China
[3] Beijing Inst Technol, Sch Management & Econ, Beijing 102206, Peoples R China
[4] IIT, Sch Management & Econ, Chicago, IL 60616 USA
来源
SUSTAINABILITY | 2017年 / 9卷 / 04期
基金
美国国家科学基金会;
关键词
short-term wind speed forecasting; ensemble empirical mode decomposition (EEMD); adaptive neural network based fuzzy inference system (ANFIS); seasonal auto-regression integrated moving average (SARIMA); ARTIFICIAL NEURAL-NETWORKS; SPATIAL CORRELATION; POWER-GENERATION; PREDICTION; MODELS; SYSTEM; ENERGY;
D O I
10.3390/su9040596
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The accuracy of short-term wind speed prediction is very important for wind power generation. In this paper, a hybrid method combining ensemble empirical mode decomposition (EEMD), adaptive neural network based fuzzy inference system (ANFIS) and seasonal auto-regression integrated moving average (SARIMA) is presented for short-term wind speed forecasting. The original wind speed series is decomposed into both periodic and nonlinear series. Then, the ANFIS model is used to catch the nonlinear series and the SARIMA model is applied for the periodic series. Numerical testing results based on two wind sites in South Dakota show the efficiency of this hybrid method.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A new hybrid iterative method for short-term wind speed forecasting
    Amjady, Nima
    Keynia, Farshid
    Zareipour, Hamidreza
    [J]. EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2011, 21 (01): : 581 - 595
  • [2] A Hybrid Approach for Short-Term Forecasting of Wind Speed
    Tatinati, Sivanagaraja
    Veluvolu, Kalyana C.
    [J]. SCIENTIFIC WORLD JOURNAL, 2013,
  • [3] A hybrid system for short-term wind speed forecasting
    He, Qingqing
    Wang, Jianzhou
    Lu, Haiyan
    [J]. APPLIED ENERGY, 2018, 226 : 756 - 771
  • [4] Short-term wind speed forecasting based on a hybrid model
    Zhang, Wenyu
    Wang, Jujie
    Wang, Jianzhou
    Zhao, Zengbao
    Tian, Meng
    [J]. APPLIED SOFT COMPUTING, 2013, 13 (07) : 3225 - 3233
  • [5] Short-term wind speed forecasting using a hybrid model
    Jiang, Ping
    Wang, Yun
    Wang, Jianzhou
    [J]. ENERGY, 2017, 119 : 561 - 577
  • [6] Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting
    Tang, Zhenhao
    Zhao, Gengnan
    Wang, Gong
    Ouyang, Tinghui
    [J]. IEEE ACCESS, 2020, 8 : 45271 - 45291
  • [7] A Hybrid Nonlinear Forecasting Strategy for Short-Term Wind Speed
    Zhao, Xin
    Wei, Haikun
    Li, Chenxi
    Zhang, Kanjian
    [J]. ENERGIES, 2020, 13 (07)
  • [8] Hybrid Method Based on Random Convolution Nodes for Short-Term Wind Speed Forecasting
    Tatinati, Sivanagaraja
    Wang, Yubo
    Khong, Andy W. H.
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (10) : 7019 - 7029
  • [9] A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting
    Lv, Shengxiang
    Wang, Lin
    Wang, Sirui
    [J]. ENERGIES, 2023, 16 (04)
  • [10] Developing a hybrid probabilistic model for short-term wind speed forecasting
    Xiaobo Zhang
    [J]. Applied Intelligence, 2023, 53 : 728 - 745