Integrable 2D Lorentzian gravity and random walks

被引:47
|
作者
Di Francesco, P [1 ]
Guitter, E
Kristjansen, C
机构
[1] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[2] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
基金
美国国家科学基金会;
关键词
quantum gravity; Lorentzian triangulations; random walks; integrable models;
D O I
10.1016/S0550-3213(99)00661-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We introduce and solve a family of discrete models of 2D Lorentzian gravity with higher curvature weight, which possess mutually commuting transfer matrices, and whose spectral parameter interpolates between flat and curved space-times. We further establish a one-to-one correspondence between Lorentzian triangulations and directed random walks. This gives a simple explanation why the Lorentzian triangulations have fractal dimension 2 and why the curvature model lies in the universality class of pure Lorentzian gravity. We also study integrable generalizations of the curvature model with arbitrary polygonal tiles. All of them are found to Lie in the same universality class. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:515 / 553
页数:39
相关论文
共 50 条
  • [41] On discrete 2D integrable equations of higher order
    Adler, V. E.
    Postnikov, V. V.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (04)
  • [42] GROUND-STATE OF 2D QUANTUM-GRAVITY AND SPECTRAL DENSITY OF RANDOM MATRICES
    KARLINER, M
    MIGDAL, A
    RUSAKOV, B
    [J]. NUCLEAR PHYSICS B, 1993, 399 (2-3) : 514 - 526
  • [43] Generalized 2D dilaton gravity and kinetic gravity braiding
    Takahashi, Kazufumi
    Kobayashi, Tsutomu
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (09)
  • [44] 2D GRAVITY+1D MATTER
    GINSPARG, P
    ZINNJUSTIN, J
    [J]. PHYSICS LETTERS B, 1990, 240 (3-4) : 333 - 340
  • [45] Wandering domains and random walks in Gevrey near-integrable systems
    Marco, JP
    Sauzin, D
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 : 1619 - 1666
  • [46] MONTE-CARLO STUDY OF RANDOM-WALKS ON A 2D GASKET FRACTAL IN AN EXTERNAL-FIELD
    KIM, GO
    OH, JH
    KIM, JJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (07): : 1905 - 1909
  • [47] Quantization of integrable systems and a 2d/4d duality
    Dorey, Nick
    Lee, Sungjay
    Hollowood, Timothy J.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2011, (10):
  • [48] Quantization of integrable systems and a 2d/4d duality
    Nick Dorey
    Sungjay Lee
    Timothy J. Hollowood
    [J]. Journal of High Energy Physics, 2011
  • [49] TRANSIENT RANDOM WALKS ON 2D-ORIENTED LATTICES
    Guillotin-Plantard, N.
    Le Ny, A.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2008, 52 (04) : 699 - U174
  • [50] Tensor network approach to 2D Lorentzian quantum Regge calculus
    Ito, Yoshiyasu
    Kadoh, Daisuke
    Sato, Yuki
    [J]. PHYSICAL REVIEW D, 2022, 106 (10)