Wandering domains and random walks in Gevrey near-integrable systems

被引:17
|
作者
Marco, JP
Sauzin, D
机构
[1] Univ Paris 06, Inst Math, UMR 7586, F-75013 Paris, France
[2] CNRS, IMCCE, UMR 8028, F-75014 Paris, France
关键词
D O I
10.1017/S0143385703000786
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct examples of Gevrey non-analytic perturbations of an integrable Hamiltonian system which give rise to an open set of unstable orbits and to a special kind of symbolic dynamics. We find an open ball in the phase space, which is transported by the Hamiltonian flow from -infinity to +infinity along one coordinate axis, at a speed that we estimate with respect to the size of the perturbation. Taking advantage of the hyperbolic features of this unstable system, particularly the splitting of invariant manifolds, we can also embed a random walk along this axis into the near-integrable dynamics.
引用
收藏
页码:1619 / 1666
页数:48
相关论文
共 50 条
  • [1] Measure and Capacity of Wandering Domains in Gevrey Near-Integrable Exact Symplectic Systems
    Lazzarini, Laurent
    Marco, Jean-Pierre
    Sauzin, David
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 257 (1235) : 1 - +
  • [2] Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems
    Jean-Pierre Marco
    David Sauzin
    [J]. Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 2003, 96 (1): : 199 - 275
  • [3] Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems
    Marco, JP
    Sauzin, D
    [J]. PUBLICATIONS MATHEMATIQUES, NO 96, 2003, (96): : 199 - 275
  • [4] Tunnelling in near-integrable systems
    Smith, Graeme C.
    Creagh, Stephen C.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (26): : 8283 - 8306
  • [5] Singularities of integrable and near-integrable Hamiltonian systems
    Bau, T
    Zung, NT
    [J]. JOURNAL OF NONLINEAR SCIENCE, 1997, 7 (01) : 1 - 7
  • [6] Letter singularities of integrable and near-integrable hamiltonian systems
    T. Bau
    N. T. Zung
    [J]. Journal of Nonlinear Science, 1997, 7 : 1 - 7
  • [7] THE VELOCITIES AND SHAPES OF SOLITONS IN NEAR-INTEGRABLE SYSTEMS
    KARPMAN, VI
    [J]. PHYSICS LETTERS A, 1984, 103 (03) : 89 - 92
  • [8] Near-integrable systems: Resonances and semiclassical trace formulas
    Ullmo, D
    Grinberg, M
    Tomsovic, S
    [J]. PHYSICAL REVIEW E, 1996, 54 (01): : 136 - 152
  • [9] Lagrangian tori near resonances of near-integrable Hamiltonian systems
    Medvedev, A. G.
    Neishtadt, A. I.
    Treschev, D. V.
    [J]. NONLINEARITY, 2015, 28 (07) : 2105 - 2130
  • [10] RESONANT STRUCTURE OF INTEGRABLE AND NEAR-INTEGRABLE 2-DIMENSIONAL SYSTEMS
    STOLOVITZKY, G
    HERNANDO, JA
    [J]. PHYSICAL REVIEW A, 1990, 41 (06): : 3026 - 3037