Integrable 2D Lorentzian gravity and random walks

被引:47
|
作者
Di Francesco, P [1 ]
Guitter, E
Kristjansen, C
机构
[1] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[2] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
基金
美国国家科学基金会;
关键词
quantum gravity; Lorentzian triangulations; random walks; integrable models;
D O I
10.1016/S0550-3213(99)00661-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We introduce and solve a family of discrete models of 2D Lorentzian gravity with higher curvature weight, which possess mutually commuting transfer matrices, and whose spectral parameter interpolates between flat and curved space-times. We further establish a one-to-one correspondence between Lorentzian triangulations and directed random walks. This gives a simple explanation why the Lorentzian triangulations have fractal dimension 2 and why the curvature model lies in the universality class of pure Lorentzian gravity. We also study integrable generalizations of the curvature model with arbitrary polygonal tiles. All of them are found to Lie in the same universality class. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:515 / 553
页数:39
相关论文
共 50 条
  • [1] Random random walks on ℤ2d
    David Bruce Wilson
    [J]. Probability Theory and Related Fields, 1997, 108 : 441 - 457
  • [2] Fermions in 2d Lorentzian quantum gravity
    Bogacz, L
    Burda, Z
    Jurkiewicz, J
    [J]. ACTA PHYSICA POLONICA B, 2003, 34 (08): : 3987 - 3999
  • [3] On the phase diagram of 2d Lorentzian quantum gravity
    Ambjorn, J
    Anagnostopoulos, KN
    Loll, R
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 733 - 735
  • [4] 2D GRAVITY AND RANDOM MATRICES
    DIFRANCESCO, P
    GINSPARG, P
    ZINNJUSTIN, J
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 254 (1-2): : 1 - 133
  • [5] Curvature correlators in nonperturbative 2D Lorentzian quantum gravity
    van der Duin, J.
    Loll, R.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (07):
  • [6] The relation between Euclidean and Lorentzian 2D quantum gravity
    Ambjorn, J
    Correia, J
    Kristjansen, C
    Loll, R
    [J]. PHYSICS LETTERS B, 2000, 475 (1-2) : 24 - 32
  • [7] Winding angle distribution of 2D random walks with traps
    Samokhin, K
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (44): : 8789 - 8795
  • [8] From 2D integrable systems to self-dual gravity
    Dunajski, M
    Mason, LJ
    Woodhouse, NMJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (28): : 6019 - 6028
  • [9] Random random walks on Z(2)(d)*
    Wilson, DB
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (04) : 441 - 457
  • [10] Sum over topologies and double-scaling limit in 2D Lorentzian quantum gravity
    Loll, R
    Westra, W
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (02) : 465 - 471