The relation between Euclidean and Lorentzian 2D quantum gravity

被引:41
|
作者
Ambjorn, J
Correia, J
Kristjansen, C
Loll, R
机构
[1] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
[2] Max Planck Inst Gravitati Phys, Albert Einstein Inst, D-14476 Golm, Germany
关键词
2D gravity; random triangulations; Lorentzian triangulations; transfer matrix formalism; random walk; branched polymers;
D O I
10.1016/S0370-2693(00)00058-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (generalized) Lorentzian space-time. This motivates a map between the parameter spaces of the two theories, under which their propagators get identified. In two dimensions, Lorentzian quantum gravity can therefore be viewed as a "renormalized" version of Euclidean quantum gravity. (C) 2000 Elsevier Science B.V. Ail rights reserved.
引用
收藏
页码:24 / 32
页数:9
相关论文
共 50 条
  • [1] Fermions in 2d Lorentzian quantum gravity
    Bogacz, L
    Burda, Z
    Jurkiewicz, J
    [J]. ACTA PHYSICA POLONICA B, 2003, 34 (08): : 3987 - 3999
  • [2] On the phase diagram of 2d Lorentzian quantum gravity
    Ambjorn, J
    Anagnostopoulos, KN
    Loll, R
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 733 - 735
  • [3] Curvature correlators in nonperturbative 2D Lorentzian quantum gravity
    van der Duin, J.
    Loll, R.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (07):
  • [4] The toroidal Hausdorff dimension of 2d Euclidean quantum gravity
    Ambjorn, J.
    Budd, T.
    [J]. PHYSICS LETTERS B, 2013, 724 (4-5) : 328 - 332
  • [5] Lorentzian and Euclidean quantum gravity analytical and numerical results
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. M-THEORY AND QUANTUM GEOMETRY, 2000, 556 : 381 - 449
  • [6] Integrable 2D Lorentzian gravity and random walks
    Di Francesco, P
    Guitter, E
    Kristjansen, C
    [J]. NUCLEAR PHYSICS B, 2000, 567 (03) : 515 - 553
  • [7] Euclidean and Lorentzian quantum gravity - Lessons from two dimensions
    Ambjorn, J
    Loll, R
    Nielsen, JL
    Rolf, J
    [J]. CHAOS SOLITONS & FRACTALS, 1999, 10 (2-3) : 177 - 195
  • [8] Sum over topologies and double-scaling limit in 2D Lorentzian quantum gravity
    Loll, R
    Westra, W
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (02) : 465 - 471
  • [9] From Euclidean to Lorentzian loop quantum gravity via a positive complexifier
    Varadarajan, Madhavan
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (01)
  • [10] Crossing the c=1 barrier in 2D Lorentzian quantum gravity -: art. no. 044010
    Ambjorn, J
    Anagnostopoulos, K
    Loll, R
    [J]. PHYSICAL REVIEW D, 2000, 61 (04)