Stability analysis of FDTD to UPML for time dependent Maxwell equations

被引:12
|
作者
Fang NengSheng [2 ,3 ]
Ying Lung-An [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] SW Univ Finance & Econ, Sch Finance, Chengdu 610074, Peoples R China
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2009年 / 52卷 / 04期
关键词
Maxwell's equations; uniaxial perfectly matched layer; initial-boundary value problem; stability; FDTD; PERFECTLY MATCHED LAYER; PML; SCATTERING; ABSORPTION;
D O I
10.1007/s11425-009-0015-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an finite-difference time-domain (FDTD) system of uniaxial perfectly matched layer (UPML) method for electromagnetic scattering problems. Particularly we analyze the discrete initial-boundary value problems of the transverse magnetic mode (TM) to Maxwell's equations with Yee's algorithm. An exterior domain in two spacial dimension is truncated by a square with a perfectly matched layer filled by a certain artificial medium. Besides, an artificial boundary condition is imposed on the outer boundary of the UPML. Using energy method, we obtain the stability of this FDTD system on the truncated domain. Numerical experiments are designed to approve the theoretical analysis.
引用
收藏
页码:794 / 816
页数:23
相关论文
共 50 条
  • [31] Stability of 2D FDTD algorithms with local mesh refinement for Maxwell's equations
    Zakharian, A. R.
    Brio, M.
    Dineen, C.
    Moloney, J. V.
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2006, 4 (02) : 345 - 374
  • [32] Stability analysis of differential equations with time-dependent delay
    Deng, WH
    Wu, YJ
    Li, CP
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (02): : 465 - 472
  • [33] Time dependent analysis of magnetic fluid based on Navier-Stokes equations, Maxwell's equations and heat equations
    Lohakan, M.
    Wiriyanuruknakorn, Ornanong
    Boonsang, S.
    Pintavirooj, C.
    [J]. WSEAS Transactions on Electronics, 2006, 3 (08): : 410 - 416
  • [34] The time-dependent Ginzburg-Landau Maxwell equations
    Tsutsumi, M
    Kasai, H
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (02) : 187 - 216
  • [35] NONLOCAL RADIATION CONDITIONS FOR THE TIME-DEPENDENT MAXWELL EQUATIONS
    MAIKOV, AR
    SVESHNIKOV, AG
    YAKUNIN, SA
    [J]. USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1990, 30 (06): : 133 - 141
  • [36] TIME-DEPENDENT INTEGRAL-EQUATIONS FOR THE MAXWELL SYSTEM
    BACHELOT, A
    PUJOLS, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (08): : 639 - 644
  • [37] Chebyshev method to solve the time-dependent Maxwell equations
    De Raedt, H
    Michielsen, K
    Kole, JS
    Figge, MT
    [J]. COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XV, 2003, 90 : 211 - 215
  • [38] An elementary solution of the Maxwell equations for a time-dependent source
    Rivera, R
    Villarroel, D
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2002, 23 (06) : 593 - 603
  • [39] Time-dependent Ginzburg-Landau Maxwell equations
    Waseda Univ, Tokyo, Japan
    [J]. Nonlinear Anal Theory Methods Appl, 2 (187-216):
  • [40] OPTIMAL CONTROL OF THE FULL TIME-DEPENDENT MAXWELL EQUATIONS
    Bommer, Vera
    Yousept, Irwin
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (01): : 237 - 261