Non-holonomic systems with symmetry allowing a conformally symplectic reduction

被引:0
|
作者
Rios, PD [1 ]
Koiller, J [1 ]
机构
[1] Lab Nacl Comp Cient, BR-25651070 Petropolis, RJ, Brazil
关键词
non-holonomic systems; almost Poisson structures;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Non-holonomic mechanical systems can be described by a degenerate almost-Poisson structure [10] (dropping the Jacobi identity) in the constrained space. If enough symmetries transversal to the constraints are present, the system reduces to a nondegenerate almost-Poisson structure on a "compressed" space. Here we show, in the simplest non-holonomic systems, that in favorable circumnstances the compressed system is conformally symplectic, although the "non-compressed" constrained system never admits a Jacobi structure (in the sense of Marle et al. [4][9]).
引用
收藏
页码:239 / 252
页数:14
相关论文
共 50 条
  • [41] Singularities of holonomic and non-holonomic robotic systems: A normal form approach
    Tchon, Krzysztof
    Ratajczak, Joanna
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2021, 358 (15): : 7698 - 7713
  • [42] Pattern generation, topology, and non-holonomic systems
    Mansouri, AR
    [J]. SYSTEMS & CONTROL LETTERS, 2005, 54 (10) : 953 - 959
  • [43] Dynamics of non-holonomic systems with stochastic transport
    Holm, D. D.
    Putkaradze, V.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2209):
  • [44] Towards consensus in networked non-holonomic systems
    Zhai, G.
    Takeda, J.
    Imae, J.
    Kobayashi, T.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (10): : 2212 - 2218
  • [45] Regularity aspects and Hamiltonization of non-holonomic systems
    Saunders, DJ
    Cantrijn, F
    Sarlet, W
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (39): : 6869 - 6890
  • [46] On the variational formulation of systems with non-holonomic constraints
    Delphenich, D. H.
    [J]. ANNALEN DER PHYSIK, 2009, 18 (09) : 649 - 670
  • [47] The planning of optimal motions of non-holonomic systems
    Mirosław Galicki
    [J]. Nonlinear Dynamics, 2017, 90 : 2163 - 2184
  • [48] The non-Holonomic mechanics
    Kupka, I
    Oliva, WM
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) : 169 - 189
  • [49] The non-holonomic double pendulum: An example of non-linear non-holonomic system
    Sergio Benenti
    [J]. Regular and Chaotic Dynamics, 2011, 16 : 417 - 442
  • [50] On non-holonomic connexions
    Schouten, JA
    [J]. PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1928, 31 (1/5): : 291 - 299