Critical exponents of random XX and XY chains:: Exact results via random walks

被引:0
|
作者
Rieger, H [1 ]
Juhász, R
Iglói, F
机构
[1] Univ Saarland, FB Theoret Phys 10 1, D-66041 Saarbrucken, Germany
[2] Univ Henri Poincare, Phys Mat Lab, F-54506 Vandoeuvre Les Nancy, France
[3] Univ Szeged, Inst Theoret Phys, H-6720 Szeged, Hungary
[4] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
来源
EUROPEAN PHYSICAL JOURNAL B | 2000年 / 13卷 / 03期
关键词
D O I
10.1007/s100510050050
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study random XY and (dimerized) XX spin-1/2 quantum spin chains at their quantum phase transition driven by the anisotropy and dimerization, respectively. Using exact expressions for magnetization, correlation functions and energy gap, obtained by the free fermion technique, the critical and off-critical (Griffiths-McCoy) singularities are related to persistence properties of random walks. In this way cre determine exactly the decay exponents for surface and bulk transverse and longitudinal correlations, correlation length exponent and dynamical exponent.
引用
收藏
页码:409 / 412
页数:4
相关论文
共 50 条
  • [41] Branching-annihilating random walks in one dimension: some exact results
    Mussawisade, K
    Santos, JE
    Schutz, GM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (19): : 4381 - 4394
  • [42] The critical exponents of crystalline random surfaces
    Wheater, JF
    NUCLEAR PHYSICS B, 1996, 458 (03) : 671 - 689
  • [43] Random Walks, Directed Cycles and Markov Chains
    Gingell, Kate
    Mendivil, Franklin
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (02): : 127 - 144
  • [44] Lifting Markov chains to random walks on groups
    Chan, O
    Lam, TK
    COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (03): : 269 - 273
  • [45] On Transience Conditions for Markov Chains and Random Walks
    D. E. Denisov
    S. G. Foss
    Siberian Mathematical Journal, 2003, 44 : 44 - 57
  • [46] Why polymer chains in a melt are not random walks
    Wittmer, J. P.
    Beckrich, P.
    Johner, A.
    Semenov, A. N.
    Obukhov, S. P.
    Meyer, H.
    Baschnagel, J.
    EPL, 2007, 77 (05)
  • [47] DETERMINISTIC RANDOM WALKS FOR RAPIDLY MIXING CHAINS
    Shiraga, Takeharu
    Yamauchi, Yukiko
    Kijima, Shuji
    Yamashita, Masafumi
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (03) : 2180 - 2193
  • [48] Knots and random walks in vibrated granular chains
    Ben-Naim, E
    Daya, ZA
    Vorobieff, P
    Ecke, RE
    PHYSICAL REVIEW LETTERS, 2001, 86 (08) : 1414 - 1417
  • [49] On transience conditions for Markov chains and random walks
    Denisov, DK
    Foss, SG
    SIBERIAN MATHEMATICAL JOURNAL, 2003, 44 (01) : 44 - 57
  • [50] Backbone scaling limits for random walks on random critical trees
    Ben Arous, Gerard
    Cabezas, Manuel
    Fribergh, Alexander
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 1814 - 1848