Contraction of superintegrable Hamiltonian systems

被引:12
|
作者
Calzada, JA [1 ]
Negro, J
del Olmo, MA
Rodríguez, MA
机构
[1] Univ Valladolid, Dept Matemat Aplicada Ingn, E-47011 Valladolid, Spain
[2] Univ Valladolid, Dept Fis Teor, E-47011 Valladolid, Spain
[3] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain
关键词
D O I
10.1063/1.533147
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the contraction of a class of superintegrable Hamiltonians by implementing the contraction of the underlying Lie groups. We also discuss the behavior of the coordinate systems that separate their equations of motion, the motion constants, as well as the corresponding solutions along such a process. (C) 2000 American Institute of Physics. [S0022-2488(99)02412-3].
引用
收藏
页码:317 / 336
页数:20
相关论文
共 50 条
  • [1] Globally superintegrable Hamiltonian systems
    A. V. Kurov
    G. A. Sardanashvily
    Theoretical and Mathematical Physics, 2017, 191 : 811 - 826
  • [2] Quantum superintegrable Hamiltonian systems
    Calzada, JA
    Negro, J
    del Olmo, MA
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 233 - 235
  • [3] GLOBALLY SUPERINTEGRABLE HAMILTONIAN SYSTEMS
    Kurov, A. V.
    Sardanashvily, G. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 191 (03) : 811 - 826
  • [4] Symmetry reduction and superintegrable Hamiltonian systems
    Rodriguez, M. A.
    Tempesta, P.
    Winternitz, P.
    WORKSHOP ON HIGHER SYMMETRIES IN PHYSICS, 2009, 175
  • [5] Superintegrable Hamiltonian systems:: Geometry and perturbations
    Fassò, F
    ACTA APPLICANDAE MATHEMATICAE, 2005, 87 (1-3) : 93 - 121
  • [6] A note on some superintegrable Hamiltonian systems
    Fordy, Allan P.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 115 : 98 - 103
  • [7] Superintegrable Hamiltonian Systems: Geometry and Perturbations
    Francesco Fassò
    Acta Applicandae Mathematica, 2005, 87 : 93 - 121
  • [8] Superintegrable Hamiltonian Systems: an algebraic approach
    Calzada, J. A.
    Negro, J.
    del Olmo, M. A.
    WORKSHOP ON HIGHER SYMMETRIES IN PHYSICS, 2009, 175
  • [9] Integrable and superintegrable Hamiltonian systems in magnetic fields
    McSween, E
    Winternitz, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 2957 - 2967
  • [10] TIME-DEPENDENT SUPERINTEGRABLE HAMILTONIAN SYSTEMS
    Sardanashvily, G.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (08)