Exact inference in contingency tables via stochastic approximation Monte Carlo

被引:1
|
作者
Jung, Byoung Cheol [2 ]
So, Sunha [3 ]
Cheon, Sooyoung [1 ]
机构
[1] Korea Univ, Dept Informat Stat, Sejong City 339700, South Korea
[2] Univ Seoul, Dept Stat, Seoul 130743, South Korea
[3] Woori Bank, Risk Model Validat Team, Seoul 100792, South Korea
基金
新加坡国家研究基金会;
关键词
Complete or incomplete contingency table; Exact inference; Structural zero cells; Importance sampling; Markov chain Monte Carlo; Stochastic approximation Monte Carlo; EXACT CONDITIONAL TESTS; GOODNESS-OF-FIT; MARKOV BASES; LINEAR-MODELS; STATISTICS; ALGORITHM;
D O I
10.1016/j.jkss.2013.06.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Monte Carlo methods for the exact inference have received much attention recently in complete or incomplete contingency table analysis. However, conventional Markov chain Monte Carlo, such as the Metropolis Hastings algorithm, and importance sampling methods sometimes generate the poor performance by failing to produce valid tables. In this paper, we apply an adaptive Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm (SAMC; Liang, Liu, & Carroll, 2007), to the exact test of the goodness-of-fit of the model in complete or incomplete contingency tables containing some structural zero cells. The numerical results are in favor of our method in terms of quality of estimates. (C) 2013 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 45
页数:15
相关论文
共 50 条
  • [21] Markov chains for Monte Carlo tests of genetic equilibrium in multidimensional contingency tables
    Lazzeroni, LC
    Lange, K
    ANNALS OF STATISTICS, 1997, 25 (01): : 138 - 168
  • [22] Phylogenetic Inference via Sequential Monte Carlo
    Bouchard-Cote, Alexandre
    Sankararaman, Sriram
    Jordan, Michael I.
    SYSTEMATIC BIOLOGY, 2012, 61 (04) : 579 - 593
  • [23] Markov chain Monte Carlo exact inference for social networks
    McDonald, John W.
    Smith, Peter W. F.
    Forster, Jonathan J.
    SOCIAL NETWORKS, 2007, 29 (01) : 127 - 136
  • [24] EFFICIENT ALGORITHMS FOR EXACT INFERENCE IN 2X2 CONTINGENCY-TABLES
    GRANVILLE, V
    SCHIFFLERS, E
    STATISTICS AND COMPUTING, 1993, 3 (02) : 83 - 87
  • [25] Sampling for Conditional Inference on Contingency Tables
    Eisinger, Robert D.
    Chen, Yuguo
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (01) : 79 - 87
  • [26] Stochastic approximation Monte Carlo with a dynamic update factor
    Pommerenck, Jordan K.
    Simpson, Tanner T.
    Perlin, Michael A.
    Roundy, David
    PHYSICAL REVIEW E, 2020, 101 (01)
  • [27] EXACT TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES
    HEALY, MJR
    TECHNOMETRICS, 1969, 11 (02) : 393 - &
  • [28] Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation
    Stathopoulos, Vassilios
    Girolami, Mark A.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1984):
  • [29] Inference for Levy-Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo
    Jasra, Ajay
    Stephens, David A.
    Doucet, Arnaud
    Tsagaris, Theodoros
    SCANDINAVIAN JOURNAL OF STATISTICS, 2011, 38 (01) : 1 - 22
  • [30] An Approximation Algorithm for Counting Contingency Tables
    Barvinok, Alexander
    Luria, Zur
    Samorodnitsky, Alex
    Yong, Alexander
    RANDOM STRUCTURES & ALGORITHMS, 2010, 37 (01) : 25 - 66