On q-orthogonal polynomials, dual to little and big q-Jacobi polynomials

被引:14
|
作者
Atakishiyev, NM
Klimyk, AU
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Cuernavaca 62210, Morelos, Mexico
[2] Bogolyubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
关键词
duality; little q-Jacobi polynomials; big q-Jacobi polynomials; discrete orthogonality relations; Jacobi matrix;
D O I
10.1016/j.jmaa.2004.02.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive discrete orthogonality relations for polynomials, dual to little and big q-Jacobi polynomials. This derivation essentially requires use of bases, consisting of eigenvectors of certain self-adjoint operators, which are representable by a Jacobi matrix. Recurrence relations for these polynomials are also given. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:246 / 257
页数:12
相关论文
共 50 条