An analogue of the big q-Jacobi polynomials in the algebra of symmetric functions

被引:6
|
作者
Olshanski, G. I. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[2] Skolkovo Inst Sci & Technol Skoltech, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Big q-Jacobi polynomials; interpolation polynomials; symmetric functions; Schur functions; beta distribution; MACDONALD POLYNOMIALS; BINOMIAL FORMULA;
D O I
10.1007/s10688-017-0184-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known how to construct a system of symmetric orthogonal polynomials in an arbitrary finite number of variables from an arbitrary system of orthogonal polynomials on the real line. In the special case of the big q-Jacobi polynomials, the number of variables can be made infinite. As a result, in the algebra of symmetric functions, there arises an inhomogeneous basis whose elements are orthogonal with respect to some probability measure. This measure is defined on a certain space of infinite point configurations and hence determines a random point process.
引用
收藏
页码:204 / 220
页数:17
相关论文
共 50 条
  • [1] An analogue of the big q-Jacobi polynomials in the algebra of symmetric functions
    G. I. Olshanski
    [J]. Functional Analysis and Its Applications, 2017, 51 : 204 - 220
  • [2] Little and big q-Jacobi polynomials and the Askey–Wilson algebra
    Pascal Baseilhac
    Xavier Martin
    Luc Vinet
    Alexei Zhedanov
    [J]. The Ramanujan Journal, 2020, 51 : 629 - 648
  • [3] Multiple big q-Jacobi polynomials
    Bouzeffour, Fethi
    Garayev, Mubariz
    [J]. BULLETIN OF MATHEMATICAL SCIENCES, 2020, 10 (02)
  • [4] Little and big q-Jacobi polynomials and the Askey-Wilson algebra
    Baseilhac, Pascal
    Martin, Xavier
    Vinet, Luc
    Zhedanov, Alexei
    [J]. RAMANUJAN JOURNAL, 2020, 51 (03): : 629 - 648
  • [5] Multivariable big and little q-Jacobi polynomials
    Stokman, JV
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (02) : 452 - 480
  • [6] A LIMIT q =-1 FOR THE BIG q-JACOBI POLYNOMIALS
    Vinet, Luc
    Zhedanov, Alexei
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (10) : 5491 - 5507
  • [7] Determinantal measures related to big q-Jacobi polynomials
    Gorin, V. E.
    Olshanski, G. I.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2015, 49 (03) : 214 - 217
  • [8] Determinantal measures related to big q-Jacobi polynomials
    V. E. Gorin
    G. I. Olshanski
    [J]. Functional Analysis and Its Applications, 2015, 49 : 214 - 217
  • [9] On q-orthogonal polynomials, dual to little and big q-Jacobi polynomials
    Atakishiyev, NM
    Klimyk, AU
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 294 (01) : 246 - 257
  • [10] On the Limit from q-Racah Polynomials to Big q-Jacobi Polynomials
    Koornwinder, Tom H.
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7