Little and big q-Jacobi polynomials and the Askey-Wilson algebra

被引:4
|
作者
Baseilhac, Pascal [1 ]
Martin, Xavier [1 ]
Vinet, Luc [2 ]
Zhedanov, Alexei [2 ,3 ]
机构
[1] Univ Orleans, Univ Tours, UMR 7013, Inst Denis Poisson,CNRS, Parc Grammt, F-37200 Tours, France
[2] Univ Montreal, Ctr Rech Math, CNRS, UMI 3457,Ctr Ville Stn, POB 6128, Montreal, PQ H3C 3J7, Canada
[3] Renmin Univ China, Informat Sch, Dept Math, Beijing 100872, Peoples R China
来源
RAMANUJAN JOURNAL | 2020年 / 51卷 / 03期
关键词
Askey-Wilson algebra; Tridiagonalization; Orthogonal polynomials; QUANTUM GROUP; REPRESENTATIONS;
D O I
10.1007/s11139-018-0080-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The little and big q-Jacobi polynomials are shown to arise as basis vectors for representations of the Askey-Wilson algebra. The operators that these polynomials respectively diagonalize are identified within the Askey-Wilson algebra generated by twisted primitive elements of Uq(sl(2))The little q-Jacobi operator and a tridiagonalization of it are shown to realize the equitable embedding of the Askey-Wilson algebra into Uq(sl(2))
引用
收藏
页码:629 / 648
页数:20
相关论文
共 50 条