GLUCOSE-DEPENDENT INSULINOTROPIC POLYPEPTIDE (GASTRIC INHIBITORY POLYPEPTIDE; GIP)

被引:139
|
作者
McIntosh, Christopher H. S. [1 ]
Widenmaier, Scott [1 ]
Kim, Su-Jin [1 ]
机构
[1] Univ British Columbia, Inst Life Sci, Diabet Res Grp, Dept Cellular & Physiol Sci, Vancouver, BC V6T 1Z3, Canada
来源
基金
加拿大健康研究院;
关键词
GLUCAGON-LIKE PEPTIDE-1; PANCREATIC BETA-CELLS; II DIABETIC-PATIENTS; PERFUSED RAT PANCREAS; ENDOPLASMIC-RETICULUM STRESS; LIPOPROTEIN-LIPASE ACTIVITY; PROTEIN-COUPLED RECEPTORS; HYPERGLYCEMIC OB/OB MICE; HEALTHY CONTROL SUBJECTS; AMINO-ACID-SEQUENCE;
D O I
10.1016/S0083-6729(08)00615-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glucose-dependent insulinotropic polypeptide (GIP; gastric inhibitory polypeptide) is a 42 amino acid hormone that is produced by enteroendocrine K-cells and released into the circulation in response to nutrient stimulation. Both GIP and glucagon-like peptide-1 (GLP-1) stimulate insulin secretion in a glucose-dependent manner and are thus classified as incretins. The structure of mammalian GIP is well conserved and both the N-terminus and central region of the molecule are important for biological activity. Following secretion, GIP is metabolized by the endoprotease dipeptidyl peptidase IV (DPP-IV). In addition to its insulinotropic activity, GIP exerts a number of additional actions including promotion of growth and survival of the pancreatic beta-cell and stimulation of adipogenesis. The brain, bone, cardiovascular system, and gastrointestinal tract are additional targets of GIP. The GIP receptor is a member of the B-family of G protein-coupled receptors and activation results in the stimulation of adenylyl cyclase and Ca2+-independent phospholipase A(2) and activation of protein kinase (PK) A and PKB. The Mek1/2-Erk1/2 and P38 MAP kinase signaling pathways are among the downstream pathways involved in the regulation of beta-cell function. GIP also increases expression of the anti-apoptotic Bcl-2 and decreases expression of the pro-apoptotic Bax, resulting in reduced beta-cell death. In adipose tissue, GIP interacts with insulin to increase lipoprotein lipase activity and lipogenesis. There is significant interest in potential clinical applications for GIP analogs and both agonists and antagonists have been developed for preclinical studies. (C) 2009 Elsevier Inc.
引用
收藏
页码:409 / 471
页数:63
相关论文
共 50 条
  • [41] Phylogeny of Glucose-Dependent Insulinotropic Polypeptide (GIP) Expression: Implications for Nutrient Efficiency and Obesity
    Musson, Michelle
    Jepeal, Lisa I.
    Mabray, Patrick D.
    Kavanaugh, Scott I.
    Zhdanova, Irina V.
    Sower, Stacia A.
    Wolfe, M. Michael
    GASTROENTEROLOGY, 2009, 136 (05) : A731 - A732
  • [42] Endogenous glucose-dependent insulinotropic polypeptide (GIP) facilitates postprandial intestinal lipid uptake
    Gasbjerg, L. S.
    Helsted, M. M.
    Stensen, S.
    Krogh, L. S. L.
    Sparre-Ulrich, A. H.
    Hartmann, B.
    Vilsboll, T.
    Christensen, M. B.
    Holst, J. J.
    Christoffersen, C.
    Knop, F. K.
    Rosenkilde, M. M.
    DIABETOLOGIA, 2022, 65 (SUPPL 1) : S260 - S260
  • [43] Characterization of glucose-dependent insulinotropic polypeptide (GIP) signaling in adipocytes and pancreatic islet β-cells
    Song, DI
    Simon, J
    Getty, L
    Corkey, BE
    Wolfe, MMM
    GASTROENTEROLOGY, 2004, 126 (04) : A9 - A9
  • [44] Glucose-dependent Insulinotropic Polypeptide (GIP) Resistance and β-cell Dysfunction Contribute to Hyperglycaemia in Acromegaly
    Shekhawat, Vikram Singh
    Bhansali, Shobhit
    Dutta, Pinaki
    Mukherjee, Kanchan Kumar
    Vaiphei, Kim
    Kochhar, Rakesh
    Sinha, Saroj K.
    Sachdeva, Naresh
    Kurpad, Anura, V
    Bhat, Kishor
    Mudaliar, Sunder
    Bhansali, Anil
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [45] Glucose-dependent insulinotropic polypeptide (GIP) receptor antagonists as anti-diabetic agents
    Gasbjerg, Laerke Smidt
    Gabe, Maria Buur Nordskov
    Hartmann, Bolette
    Christensen, Mikkel Bring
    Knop, Filip Krag
    Holst, Jens Juul
    Rosenkilde, Mette Marie
    PEPTIDES, 2018, 100 : 173 - 181
  • [46] MAPPING OF HUMAN BRAIN FOR GLUCOSE-DEPENDENT INSULINOTROPIC POLYPEPTIDE (GIP) AND GIP RECEPTORS EXPRESSION: IMPLICATIONS IN SCHIZOPHRENIA
    Singh, Amarendra N.
    Basu, Dipa
    Skoblenick, K. J.
    Castellano, J. M.
    Pontoriero, G.
    Thomas, N.
    SCHIZOPHRENIA RESEARCH, 2010, 117 (2-3) : 528 - 528
  • [47] Regulation of glucose-dependent insulinotropic polypeptide (GIP) expression in cells of pancreatic and intestinal lineage
    Jepeal, Lisa I.
    Boylan, Michael O.
    Wolfe, M. M.
    GASTROENTEROLOGY, 2006, 130 (04) : A55 - A56
  • [48] Evolutionary Conservation of Glucose-Dependent Insulinotropic Polypeptide (GIP) Gene Regulation and the Enteroinsular Axis
    Musson, Michelle
    Sharifnia, Torfay
    Jepeal, Lisa I.
    Wolfe, M. Michael
    GASTROENTEROLOGY, 2009, 136 (05) : A50 - A51
  • [49] Glucose-Dependent Insulinotropic Polypeptide (GIP) Increases Dipeptide Transport in Mouse Small Intestine
    Bartoo, Aaron C.
    Schwartz, John H.
    Wolfe, M. Michael
    Singh, Satish K.
    GASTROENTEROLOGY, 2009, 136 (05) : A82 - A82
  • [50] Glucose-dependent Insulinotropic Polypeptide (GIP) Resistance and β-cell Dysfunction Contribute to Hyperglycaemia in Acromegaly
    Vikram Singh Shekhawat
    Shobhit Bhansali
    Pinaki Dutta
    Kanchan Kumar Mukherjee
    Kim Vaiphei
    Rakesh Kochhar
    Saroj K. Sinha
    Naresh Sachdeva
    Anura V. Kurpad
    Kishor Bhat
    Sunder Mudaliar
    Anil Bhansali
    Scientific Reports, 9