GLUCOSE-DEPENDENT INSULINOTROPIC POLYPEPTIDE (GASTRIC INHIBITORY POLYPEPTIDE; GIP)

被引:139
|
作者
McIntosh, Christopher H. S. [1 ]
Widenmaier, Scott [1 ]
Kim, Su-Jin [1 ]
机构
[1] Univ British Columbia, Inst Life Sci, Diabet Res Grp, Dept Cellular & Physiol Sci, Vancouver, BC V6T 1Z3, Canada
来源
基金
加拿大健康研究院;
关键词
GLUCAGON-LIKE PEPTIDE-1; PANCREATIC BETA-CELLS; II DIABETIC-PATIENTS; PERFUSED RAT PANCREAS; ENDOPLASMIC-RETICULUM STRESS; LIPOPROTEIN-LIPASE ACTIVITY; PROTEIN-COUPLED RECEPTORS; HYPERGLYCEMIC OB/OB MICE; HEALTHY CONTROL SUBJECTS; AMINO-ACID-SEQUENCE;
D O I
10.1016/S0083-6729(08)00615-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glucose-dependent insulinotropic polypeptide (GIP; gastric inhibitory polypeptide) is a 42 amino acid hormone that is produced by enteroendocrine K-cells and released into the circulation in response to nutrient stimulation. Both GIP and glucagon-like peptide-1 (GLP-1) stimulate insulin secretion in a glucose-dependent manner and are thus classified as incretins. The structure of mammalian GIP is well conserved and both the N-terminus and central region of the molecule are important for biological activity. Following secretion, GIP is metabolized by the endoprotease dipeptidyl peptidase IV (DPP-IV). In addition to its insulinotropic activity, GIP exerts a number of additional actions including promotion of growth and survival of the pancreatic beta-cell and stimulation of adipogenesis. The brain, bone, cardiovascular system, and gastrointestinal tract are additional targets of GIP. The GIP receptor is a member of the B-family of G protein-coupled receptors and activation results in the stimulation of adenylyl cyclase and Ca2+-independent phospholipase A(2) and activation of protein kinase (PK) A and PKB. The Mek1/2-Erk1/2 and P38 MAP kinase signaling pathways are among the downstream pathways involved in the regulation of beta-cell function. GIP also increases expression of the anti-apoptotic Bcl-2 and decreases expression of the pro-apoptotic Bax, resulting in reduced beta-cell death. In adipose tissue, GIP interacts with insulin to increase lipoprotein lipase activity and lipogenesis. There is significant interest in potential clinical applications for GIP analogs and both agonists and antagonists have been developed for preclinical studies. (C) 2009 Elsevier Inc.
引用
收藏
页码:409 / 471
页数:63
相关论文
共 50 条
  • [31] Glucose-dependent insulinotropic polypeptide (GIP) stimulates colorectal cancer cell growth
    Wang, Baogui
    Prabakaran, Daniel
    Wolfe, M. Michael
    GASTROENTEROLOGY, 2008, 134 (04) : A27 - A27
  • [32] Glucose-Dependent Insulinotropic Polypeptide Is a Pancreatic Polypeptide Secretagogue in Humans
    Veedfald, Simon
    Vedtofte, Louise
    Skov-Jeppesen, Kirsa
    Deacon, Carolyn F.
    Hartmann, Bolette
    Vilsboll, Tina
    Knop, Filip K.
    Christensen, Mikkel B.
    Holst, Jens J.
    JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2020, 105 (03): : E502 - E510
  • [33] Mechanisms of fat-induced gastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide secretion from K cells
    Yamane, Shunsuke
    Harada, Norio
    Inagaki, Nobuya
    JOURNAL OF DIABETES INVESTIGATION, 2016, 7 : 20 - 26
  • [34] Glucose-dependent insulinotropic polypeptide (GIP) stimulates transepithelial glucose transport in mouse jejunum in vitro
    Krishnan, Selvi
    Wolfe, M. Michael
    Schwartz, John H.
    Singh, Satish K.
    GASTROENTEROLOGY, 2006, 130 (04) : A67 - A68
  • [35] Expression of glucose-dependent insulinotropic polypeptide in the zebrafish
    Musson, Michelle C.
    Jepeal, Lisa I.
    Mabray, Patrick D.
    Zhdanova, Irina V.
    Cardoso, Wellington V.
    Wolfe, M. Michael
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2009, 297 (06) : R1803 - R1812
  • [36] Effects of glucose-dependent insulinotropic polypeptide on glucagon
    Christensen, Mikkel
    Knop, Filip K.
    CARDIOVASCULAR ENDOCRINOLOGY, 2016, 5 (03): : 75 - 81
  • [37] Identification of a bioactive domain in the amino-terminus of glucose-dependent insulinotropic polypeptide (GIP)
    Hinke, SA
    Manhart, S
    Pamir, N
    Demuth, HU
    Gelling, RW
    Pederson, RA
    McIntosh, CHS
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 2001, 1547 (01): : 143 - 155
  • [38] Glucose-Dependent Insulinotropic Polypeptide (GIP) Inhibits Bone Resorption Independently of Insulin and Glycemia
    Christensen, Mikkel B.
    Lund, Asger
    Calanna, Salvatore
    Jorgensen, Niklas R.
    Holst, Jens J.
    Vilsboll, Tina
    Knop, Filip K.
    JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2018, 103 (01): : 288 - 294
  • [39] Internalization and trafficking of the glucose-dependent insulinotropic polypeptide (GIP) receptor is dependent on intracellular calcium signaling
    Singh, SK
    Boylan, M
    Krishnan, S
    Wolfe, MM
    GASTROENTEROLOGY, 2003, 124 (04) : A303 - A304
  • [40] Regulation of glucose-dependent insulinotropic polypeptide (GIP) gene by paired box (Pax) 6
    Fujita, Y.
    Chui, J. W. Y.
    King, D. S.
    Pownall, S.
    Cheung, A. T.
    Kieffer, T. J.
    REGULATORY PEPTIDES, 2006, 135 (03) : 124 - 125