From Permutation Points to Permutation Cubics*

被引:0
|
作者
Odehnal, Boris [1 ]
机构
[1] Univ Appl Arts Vienna, Vienna, Austria
来源
JOURNAL FOR GEOMETRY AND GRAPHICS | 2022年 / 26卷 / 02期
关键词
permutation point; triangle cubic; permutation cubic; triangle center; antiorthic axis; Mandart circumellipse;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The trilinear coordinates of a point V in the plane of a triangle can be permuted in six ways which yields the six permutation points of V. These six points always lie on a single conic, called the permutation conic. A natural variant or generalization seems to be: The six permutation points of V together with the six permutation points of V 's image under a certain quadratic Cremona transformation. comprise a set of twelve points that always lie on a single cubic which we shall call the permutation cubic of V with respect to.. In the present paper we shall discuss especially the cases where. is the isogonal or the isotomic conjugation. Properties and remarkable features of these cubics shall be elaborated.
引用
收藏
页码:253 / 269
页数:17
相关论文
共 50 条
  • [1] Permutation Cubics
    Odehnal, Boris
    ICGG 2022 - PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS, 2023, 146 : 59 - 70
  • [2] Covering points in permutation algebras
    Coconet, Tiberiu
    ARCHIV DER MATHEMATIK, 2013, 100 (02) : 107 - 113
  • [3] THE FIXED-POINTS OF A PERMUTATION
    NIETO, JH
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (02): : 166 - 167
  • [4] Covering points in permutation algebras
    Tiberiu Coconeţ
    Archiv der Mathematik, 2013, 100 : 107 - 113
  • [5] Fixed points for positive permutation braids
    Misiurewicz, Michal
    Rodrigues, Ana
    FUNDAMENTA MATHEMATICAE, 2012, 216 (02) : 129 - 146
  • [6] ON NOMINAL SYNTAX AND PERMUTATION FIXED POINTS
    Ayala-Rincon, Mauricio
    Fernandez, Maribel
    Nantes-Sobrinho, Daniele
    LOGICAL METHODS IN COMPUTER SCIENCE, 2020, 16 (01) : 19:1 - 19:36
  • [7] Constructing permutation polynomials from permutation polynomials of subfields
    Reis, Lucas
    Wang, Qiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 96
  • [8] On fixed points of elements in primitive permutation groups
    Liebeck, Martin W.
    Shalev, Aner
    JOURNAL OF ALGEBRA, 2015, 421 : 438 - 459
  • [9] Permutation tableaux and permutation patterns
    Steingrimsson, Einar
    Williams, Lauren K.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (02) : 211 - 234
  • [10] Permutation and complete permutation polynomials
    Bassalygo, L. A.
    Zinoviev, V. A.
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 33 : 198 - 211