The Hilton-Milner theorem for the distance-regular graphs of bilinear forms

被引:4
|
作者
Gong, Chao
Lv, Benjian [1 ]
Wang, Kaishun
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国博士后科学基金;
关键词
Intersecting family; Hilton-Milner theorem; Bilinear forms graph; Covering number; KO-RADO THEOREM; FINITE VECTOR-SPACES; INTERSECTION-THEOREMS; SYSTEMS; ANALOG; FAMILIES; SETS;
D O I
10.1016/j.laa.2016.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be an (n + 1)-dimensional vector space over the finite field F-q with l >= n > 0, and W be a fixed 1 -dimensional subspace of V. Suppose is a non -trivial intersecting family of n -dimensional subspaces U of V with U boolean AND W = 0. In this paper, we give the tight upper bound for the size of F, and describe the structure of F which reaches the upper bound. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:130 / 144
页数:15
相关论文
共 50 条