The Hilton-Milner theorem for the distance-regular graphs of bilinear forms

被引:4
|
作者
Gong, Chao
Lv, Benjian [1 ]
Wang, Kaishun
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国博士后科学基金;
关键词
Intersecting family; Hilton-Milner theorem; Bilinear forms graph; Covering number; KO-RADO THEOREM; FINITE VECTOR-SPACES; INTERSECTION-THEOREMS; SYSTEMS; ANALOG; FAMILIES; SETS;
D O I
10.1016/j.laa.2016.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be an (n + 1)-dimensional vector space over the finite field F-q with l >= n > 0, and W be a fixed 1 -dimensional subspace of V. Suppose is a non -trivial intersecting family of n -dimensional subspaces U of V with U boolean AND W = 0. In this paper, we give the tight upper bound for the size of F, and describe the structure of F which reaches the upper bound. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:130 / 144
页数:15
相关论文
共 50 条
  • [21] On subgraphs in distance-regular graphs
    Koolen, J.H.
    Journal of Algebraic Combinatorics, 1992, 1 (04):
  • [22] EIGENVECTORS OF DISTANCE-REGULAR GRAPHS
    POWERS, DL
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1988, 9 (03) : 399 - 407
  • [23] Shilla distance-regular graphs
    Koolen, Jack H.
    Park, Jongyook
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (08) : 2064 - 2073
  • [24] Tight Distance-Regular Graphs
    Aleksandar Jurišić
    Jack Koolen
    Paul Terwilliger
    Journal of Algebraic Combinatorics, 2000, 12 : 163 - 197
  • [25] Edge-distance-regular graphs are distance-regular
    Camara, M.
    Dalfo, C.
    Delorme, C.
    Fiol, M. A.
    Suzuki, H.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (05) : 1057 - 1067
  • [26] Tight distance-regular graphs
    Jurisic, A
    Koolen, J
    Terwilliger, P
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2000, 12 (02) : 163 - 197
  • [27] CUBIC DISTANCE-REGULAR GRAPHS
    BIGGS, NL
    BOSHIER, AG
    SHAWETAYLOR, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 33 : 385 - 394
  • [28] A construction of distance-regular graphs from subspaces in d-bounded distance-regular graphs
    Gao, Suogang
    Guo, Jun
    ARS COMBINATORIA, 2011, 98 : 135 - 148
  • [29] The spectral excess theorem for distance-regular graphs: a global (over) view
    van Dam, Edwin R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [30] Weakly distance-regular digraphs whose underlying graphs are distance-regular, I
    Yang, Yuefeng
    Zeng, Qing
    Wang, Kaishun
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (04) : 827 - 847