A new preconditioning technique for large real sparse symmetric linear systems in electromagnetic field analysis

被引:0
|
作者
Wang, JM [1 ]
Xie, DX [1 ]
Yao, YY [1 ]
机构
[1] Shenyang Univ Technol, Shenyang 110023, Peoples R China
来源
ICEMS'2001: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS I AND II | 2001年
关键词
eddy current field; finite element analysis; convergence of conjugate gradient method. numerical technique;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new preconditioned conjugate gradient method for solution of large real sparse symmetric linear equations in 3D-electromagnetic field analysis is presented. Three relaxation factors are used to reduce the computation time of each iterative step of the conjugate. gradient method and improve rate of convergence. Numerical examples show that the method is problem-independent in a certain extent, and could decrease the computation time over 50% than the conventional method.
引用
收藏
页码:1077 / 1080
页数:4
相关论文
共 50 条
  • [31] Numerical performance of preconditioning techniques for the solution of complex sparse linear systems
    Mazzia, A
    Pini, G
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2003, 19 (01): : 37 - 48
  • [32] Robust parallel preconditioning techniques for solving general sparse linear systems
    Wang, K
    Zhang, J
    DCABES 2002, PROCEEDING, 2002, : 109 - 113
  • [33] A High-Quality Preconditioning Technique for Multi-Length-Scale Symmetric Positive Definite Linear Systems
    Ichitaro Yamazaki
    Richard
    Scalettar
    NumericalMathematics:Theory,MethodsandApplications, 2009, (04) : 469 - 484
  • [34] Preconditioning sparse nonsymmetric linear systems with the Sherman-Morrison formula
    Bru, R
    Cerdán, J
    Marín, J
    Mas, J
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (02): : 701 - 715
  • [35] Arnoldi preconditioning for solving large linear biomedical systems
    Deo, Makarand
    Vigmond, Edward
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 2914 - 2917
  • [36] SOLVING LARGE SPARSE LINEAR-SYSTEMS
    KINCAID, DR
    GRIMES, RG
    YOUNG, DM
    JOURNAL OF PETROLEUM TECHNOLOGY, 1979, 31 (01): : 69 - 69
  • [37] NEARLY LINEAR TIME ALGORITHMS FOR PRECONDITIONING AND SOLVING SYMMETRIC, DIAGONALLY DOMINANT LINEAR SYSTEMS
    Spielman, Daniel A.
    Teng, Shang-Hua
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (03) : 835 - 885
  • [38] A note on simultaneous preconditioning and symmetrization of non-symmetric linear systems
    Ghoussoub, Nassif
    Moradifam, Amir
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2011, 18 (03) : 343 - 349
  • [39] Local fill reduction techniques for sparse symmetric linear systems
    Gunther Reißig
    Electrical Engineering, 2007, 89 : 639 - 652
  • [40] Numerically Aware Orderings for Sparse Symmetric Indefinite Linear Systems
    Hogg, Jonathan
    Scott, Jennifer
    Thorne, Sue
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2017, 44 (02):