A new preconditioning technique for large real sparse symmetric linear systems in electromagnetic field analysis

被引:0
|
作者
Wang, JM [1 ]
Xie, DX [1 ]
Yao, YY [1 ]
机构
[1] Shenyang Univ Technol, Shenyang 110023, Peoples R China
关键词
eddy current field; finite element analysis; convergence of conjugate gradient method. numerical technique;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new preconditioned conjugate gradient method for solution of large real sparse symmetric linear equations in 3D-electromagnetic field analysis is presented. Three relaxation factors are used to reduce the computation time of each iterative step of the conjugate. gradient method and improve rate of convergence. Numerical examples show that the method is problem-independent in a certain extent, and could decrease the computation time over 50% than the conventional method.
引用
收藏
页码:1077 / 1080
页数:4
相关论文
共 50 条
  • [21] A new method for solving linear equations with large sparse symmetric and indefinite coefficients matrix
    Wang, JM
    Xie, DX
    Bai, BD
    IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) : 1069 - 1071
  • [22] A Subgraph Preconditioning Algorithm for Large Linear Systems
    Zhang, Huirong
    Cao, Jianwen
    2016 IEEE TRUSTCOM/BIGDATASE/ISPA, 2016, : 2153 - 2159
  • [24] Preconditioning of complex symmetric linear systems with applications in optical tomography
    Arridge, S. R.
    Egger, H.
    Schlottbom, M.
    APPLIED NUMERICAL MATHEMATICS, 2013, 74 : 35 - 48
  • [25] Symmetric Stair Preconditioning of Linear Systems for Parallel Trajectory Optimization
    Bu, Xueyi
    Plancher, Brian
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 9779 - 9786
  • [26] Efficient preconditioning for sequences of parametric complex symmetric linear systems
    Bertaccini, D
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 18 : 49 - 64
  • [27] Sparse symmetric preconditioners for dense linear systems in electromagnetism
    Carpentieri, B
    Duff, IS
    Giraud, L
    Made, MMM
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2004, 11 (8-9) : 753 - 771
  • [28] Some Generalizations and Modifications of Iterative Methods for Solving Large Sparse Symmetric Indefinite Linear Systems
    Li, Yu-Chien
    Chen, Jen-Yuan
    Kincaid, David R.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [29] A numerical evaluation of HSL packages for the direct solution of large sparse, symmetric linear systems of equations
    Gould, NIM
    Scott, JA
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2004, 30 (03): : 300 - 325
  • [30] A High-Quality Preconditioning Technique for Multi-Length-Scale Symmetric Positive Definite Linear Systems
    Yamazaki, Ichitaro
    Bai, Zhaojun
    Chen, Wenbin
    Scalettar, Richard
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2009, 2 (04) : 469 - 484