Explosions: global bifurcations at heteroclinic tangencies

被引:8
|
作者
Alligood, K [1 ]
Sander, E
Yorke, J
机构
[1] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
[2] Univ Maryland, Inst Phys Sci & Technol, Dept Math, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Phys Sci & Technol, Dept Phys, College Pk, MD 20742 USA
关键词
D O I
10.1017/S0143385702000615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate bifurcations in the chain recurrent set for a particular class of one-parameter families of diffeomorphisms in the plane. We give necessary and sufficient conditions for a discontinuous change in the chain recurrent set to occur at a point of heteroclinic tangency. These are also necessary and sufficient conditions for an Omega-explosion to occur at that point.
引用
收藏
页码:953 / 972
页数:20
相关论文
共 50 条
  • [1] Robust Heteroclinic Tangencies
    Barrientos, Pablo G.
    Perez, Sebastian A.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (04): : 1041 - 1056
  • [2] Robust Heteroclinic Tangencies
    Pablo G. Barrientos
    Sebastián A. Pérez
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2020, 51 : 1041 - 1056
  • [3] Global and local control of homoclinic and heteroclinic bifurcations
    Cao, HJ
    Chen, GR
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (08): : 2411 - 2432
  • [4] Partial Symmetry Breaking and Heteroclinic Tangencies
    Labouriau, Isabel S.
    Rodrigues, Alexandre A. P.
    [J]. PROGRESS AND CHALLENGES IN DYNAMICAL SYSTEMS, 2013, 54 : 281 - 299
  • [5] Hopf bifurcations and homoclinic tangencies
    Martín, JC
    [J]. NONLINEARITY, 1999, 12 (04) : 893 - 902
  • [6] Dense heteroclinic tangencies near a Bykov cycle
    Labouriau, Isabel S.
    Rodrigues, Alexandre A. P.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (11) : 5875 - 5902
  • [7] Bifurcations of Heteroclinic Orbits
    Kenneth R. Meyer
    Patrick McSwiggen
    Xiaojie Hou
    [J]. Journal of Dynamics and Differential Equations, 2010, 22 : 367 - 380
  • [8] Bifurcations of heteroclinic loops
    Deming Zhu
    Zhihong Xia
    [J]. Science in China Series A: Mathematics, 1998, 41 : 837 - 848
  • [9] Bifurcations of heteroclinic loops
    朱德明
    夏志宏
    [J]. Science China Mathematics, 1998, (08) : 837 - 848
  • [10] Bifurcations of heteroclinic loops
    Zhu, DM
    Xia, ZH
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (08): : 837 - 848