Bifurcations of heteroclinic loops

被引:0
|
作者
朱德明
夏志宏
机构
关键词
heteroclinic orbit; homoclinic bifurcation; periodic orbit bifurcation;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
By generalizing the Floquet method from periodic systems to systems with exponential dichotomy, a local coordinate system is established in a neighborhood of the heteroclinic loop \%Γ\% to study the bifurcation problems of homoclinic and periodic orbits. Asymptotic expressions of the bifurcation surfaces and their relative positions are given. The results obtained in literature concerned with the 1\|hom bifurcation surfaces are improved and extended to the nontransversal case. Existence regions of the 1\|per orbits bifurcated from Γ are described, and the uniqueness and incoexistence of the 1\|hom and 1\|per orbit and the inexistence of the 2\|hom and 2\|per orbit are also obtained.
引用
收藏
页码:837 / 848
页数:12
相关论文
共 50 条
  • [1] Bifurcations of heteroclinic loops
    Deming Zhu
    Zhihong Xia
    [J]. Science in China Series A: Mathematics, 1998, 41 : 837 - 848
  • [2] Bifurcations of heteroclinic loops
    Zhu, DM
    Xia, ZH
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (08): : 837 - 848
  • [3] Bifurcations of rough heteroclinic loops with three saddle points
    Jin, YL
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2002, 18 (01) : 199 - 208
  • [4] NONRESONANT BIFURCATIONS OF HETEROCLINIC LOOPS WITH ONE INCLINATION FLIP
    Shui, Shuliang
    Li, Jingjing
    Zhang, Xuyang
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (01): : 255 - 273
  • [5] Bifurcations of Rough Heteroclinic Loops with Three Saddle Points
    Yin Lai Jin
    De Ming Zhu
    [J]. Acta Mathematica Sinica, 2002, 18 : 199 - 208
  • [6] Bifurcations of Rough Heteroclinic Loops with Three Saddle Points
    JIN Yin Lai
    ZHU De Ming Department of Mathematics. Linyi Teachers University. Shandong 276005. P. R. China Department of Mathematics. East China Normal University. Shanghai 200062. P. R. China Department of Mathematics. East China Normal University. Shanghai 200062. P. R. China
    [J]. Acta Mathematica Sinica,English Series, 2002, 18 (01) : 199 - 208
  • [7] Bifurcations of Heteroclinic Orbits
    Kenneth R. Meyer
    Patrick McSwiggen
    Xiaojie Hou
    [J]. Journal of Dynamics and Differential Equations, 2010, 22 : 367 - 380
  • [8] Bifurcations of Heteroclinic Orbits
    Meyer, Kenneth R.
    McSwiggen, Patrick
    Hou, Xiaojie
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2010, 22 (03) : 367 - 380
  • [9] Homoclinic and heteroclinic bifurcations close to a twisted heteroclinic cycle
    Zimmermann, MG
    Natiello, MA
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (02): : 359 - 375
  • [10] Codimension 3 Non-resonant Bifurcations of Rough Heteroclinic Loops with One Orbit Flip*
    Shuliang Shui
    Deming Zhu
    [J]. Chinese Annals of Mathematics, Series B, 2006, 27 : 657 - 674