A Trudinger-Moser inequality in a weighted Sobolev space and applications

被引:29
|
作者
Furtado, Marcelo F. [1 ]
Medeiros, Everaldo S. [2 ]
Severo, Uberlandio B. [2 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Trudinger-Moser inequality; weighted Sobolev space; critical exponential growth; NONHOMOGENEOUS ELLIPTIC PROBLEM; POSITIVE SOLUTIONS; CRITICAL EXPONENT; EQUATIONS; MULTIPLICITY; EXISTENCE; GROWTH;
D O I
10.1002/mana.201200315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a Trudinger-Moser type inequality in a weighted Sobolev space. The inequality is applied in the study of the elliptic equation -div(K(x)del u) = K(x) f (u) + h in R-2, where K(x) = exp(|x|(2)/4), f has exponential critical growth and h belongs to the dual of an appropriate function space. We prove that the problem has at least two weak solutions provided h not equal 0 is small. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1255 / 1273
页数:19
相关论文
共 50 条