Notes for Trudinger-Moser Inequality

被引:0
|
作者
Berezhnoi, Eugenii I. [1 ]
Kocherova, Victoria V. [1 ]
Perfilyev, Alexei A. [2 ]
机构
[1] Yaroslavl State Univ, Yaroslavl, Russia
[2] State Univ Management, Moscow, Russia
关键词
SOBOLEV INEQUALITIES; IMBEDDINGS;
D O I
10.1063/1.5000608
中图分类号
O59 [应用物理学];
学科分类号
摘要
It is shown that the well-known Trudinger-Moser inequality is equivalent to the embedding of the Sobolev space W-n(1,o) (Omega) into the Marcinkiewicz space M(psi), and the function psi is directly defined. It is shown that in the embedding theorem the Marcinkiewicz space M(psi(n)) can not be replaced even by the Lorentz space Lambda(psi(n)) with the same fundamental function.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] On compactness in the Trudinger-Moser inequality
    Adimurthi
    Tintarev, Cyril
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2014, 13 (02) : 399 - 416
  • [2] On a weighted Trudinger-Moser inequality in RN
    Abreu, Emerson
    Fernandes Jr, Leandro G.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (04) : 3089 - 3118
  • [3] An improvement for the Trudinger-Moser inequality and applications
    do O, Jodo Marcos
    de Souza, Manasses
    de Medeiros, Everaldo
    Severo, Uberlandio
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (04) : 1317 - 1349
  • [4] Trudinger-Moser inequality with remainder terms
    Tintarev, Cyril
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) : 55 - 66
  • [5] A modified singular Trudinger-Moser inequality
    Wang, Yamin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [6] A Weighted Singular Trudinger-Moser Inequality
    Yu Pengxiu
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2022, 35 (03): : 208 - 222
  • [7] A Singular Trudinger-Moser Inequality in Hyperbolic Space
    Zhu Xiaobao
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2015, 28 (01): : 39 - 46
  • [8] GLOBAL TRUDINGER-MOSER INEQUALITY ON METRIC SPACES
    Adimurthi
    Gorka, Przemyslaw
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (03): : 1131 - 1139
  • [9] Trudinger-Moser inequality in the hyperbolic space HN
    Mancini, Gianni
    Sandeep, Kunnath
    Tintarev, Cyril
    ADVANCES IN NONLINEAR ANALYSIS, 2013, 2 (03) : 309 - 324
  • [10] A Trudinger-Moser type inequality in a strip and applications
    de Souza, Manasses X.
    APPLIED MATHEMATICS LETTERS, 2023, 140