CONSTRAINED SHAPE PRESERVING RATIONAL CUBIC FRACTAL INTERPOLATION FUNCTIONS

被引:10
|
作者
Chand, A. K. B. [1 ]
Tyada, K. R. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Iterated function systems; fractal interpolation; convergence analysis; bounding Cauchy remainder; Peano-kernel theorem; constrained data interpolation; positivity; DATA VISUALIZATION; SCIENTIFIC-DATA; POSITIVITY; HERMITE;
D O I
10.1216/RMJ-2018-48-1-75
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the construction of C-1-rational cubic fractal interpolation function (RCFIF) and its application in preserving the constrained nature of a given data set. The C-1-RCFIF is the fractal design of the traditional rational cubic interpolant of the form p(i)(theta)/q(i)(theta), where p(i)(theta) and q(i)(theta) are cubic and quadratic polynomials with three tension parameters. We present the error estimate of the approximation of RCFIF with the original function in C-k[x(1),x(n)], k = 1, 3. When the data set is constrained between two piecewise straight lines, we derive the sufficient conditions on the IFS parameters of the RCFIF so that it lies between those two lines. Numerical examples are given to support the theoretical results.
引用
收藏
页码:75 / 105
页数:31
相关论文
共 50 条
  • [1] Shape preserving rational cubic trigonometric fractal interpolation functions
    Tyada, K. R.
    Chand, A. K. B.
    Sajid, M.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 : 866 - 891
  • [2] Shape preserving constrained and monotonic rational quintic fractal interpolation functions
    A. K. B. Chand
    K. R. Tyada
    [J]. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2018, 10 (1) : 15 - 33
  • [3] Shape preserving constrained and monotonic rational quintic fractal interpolation functions
    Chand, A. K. B.
    Tyada, K. R.
    [J]. INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2018, 10 (01) : 15 - 33
  • [4] Shape preserving rational cubic fractal interpolation function
    Balasubramani, N.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 319 : 277 - 295
  • [5] Positivity Preserving Rational Cubic Trigonometric Fractal Interpolation Functions
    Chand, A. K. B.
    Tyada, K. R.
    [J]. MATHEMATICS AND COMPUTING, 2015, 139 : 187 - 202
  • [6] Shape preserving α-fractal rational cubic splines
    Balasubramani, N.
    Prasad, M. Guru Prem
    Natesan, S.
    [J]. CALCOLO, 2020, 57 (03)
  • [7] Positivity Preserving Rational Cubic Ball Constrained Interpolation
    Tahat, Ayser Nasir Hassan
    Piah, Abd Rahni Mt
    Yahya, Zainor Ridzuan
    [J]. PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 331 - 336
  • [8] Constrained and convex interpolation through rational cubic fractal interpolation surface
    N. Balasubramani
    M. Guru Prem Prasad
    S. Natesan
    [J]. Computational and Applied Mathematics, 2018, 37 : 6308 - 6331
  • [9] Constrained and convex interpolation through rational cubic fractal interpolation surface
    Balasubramani, N.
    Prasad, M. Guru Prem
    Natesan, S.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05): : 6308 - 6331
  • [10] Constrained 2D Data Interpolation Using Rational Cubic Fractal Functions
    Chand, A. K. B.
    Tyada, K. R.
    [J]. MATHEMATICAL ANALYSIS AND ITS APPLICATIONS, 2015, 143 : 593 - 607