CONSTRAINED SHAPE PRESERVING RATIONAL CUBIC FRACTAL INTERPOLATION FUNCTIONS

被引:10
|
作者
Chand, A. K. B. [1 ]
Tyada, K. R. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Iterated function systems; fractal interpolation; convergence analysis; bounding Cauchy remainder; Peano-kernel theorem; constrained data interpolation; positivity; DATA VISUALIZATION; SCIENTIFIC-DATA; POSITIVITY; HERMITE;
D O I
10.1216/RMJ-2018-48-1-75
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the construction of C-1-rational cubic fractal interpolation function (RCFIF) and its application in preserving the constrained nature of a given data set. The C-1-RCFIF is the fractal design of the traditional rational cubic interpolant of the form p(i)(theta)/q(i)(theta), where p(i)(theta) and q(i)(theta) are cubic and quadratic polynomials with three tension parameters. We present the error estimate of the approximation of RCFIF with the original function in C-k[x(1),x(n)], k = 1, 3. When the data set is constrained between two piecewise straight lines, we derive the sufficient conditions on the IFS parameters of the RCFIF so that it lies between those two lines. Numerical examples are given to support the theoretical results.
引用
收藏
页码:75 / 105
页数:31
相关论文
共 50 条
  • [41] Visualization of constrained data by smooth rational fractal interpolation
    Liu, Jianshun
    Bao, Fangxun
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (09) : 1524 - 1540
  • [42] CONSTRAINED FRACTAL INTERPOLATION FUNCTIONS WITH VARIABLE SCALING
    Chand, A. K. B.
    Reddy, K. M.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 60 - 73
  • [44] Shape preserving fractal multiquadric quasi-interpolation
    Kumar, D.
    Chand, A. K. B.
    Massopust, P. R.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [45] AN INTERACTIVE PROCEDURE FOR SHAPE PRESERVING CUBIC SPLINE INTERPOLATION
    MONTEFUSCO, LB
    [J]. COMPUTERS & GRAPHICS, 1987, 11 (04) : 389 - 392
  • [46] Shape preserving surface data visualization using rational bi-cubic functions
    Hussain, M. Z.
    Bashir, S.
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2011, 19 (04) : 267 - 307
  • [47] MONOTONICITY/SYMMETRICITY PRESERVING RATIONAL QUADRATIC FRACTAL INTERPOLATION SURFACES
    Chand, Arya Kumar Bedabrata
    Vijender, Nallapu
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (01) : 145 - 165
  • [48] Monotonicity Preserving Splines Using Rational Ball Cubic Interpolation
    Zakaria, Wan Zafira Ezza Wan
    Jamal, Ena
    Ali, Jamaludin Md.
    [J]. 22ND NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM22), 2015, 1682
  • [49] POSITIVITY PRESERVING INTERPOLATION BY USING RATIONAL CUBIC BALL SPLINE
    Karim, Samsul Ariffin Abdul
    [J]. JURNAL TEKNOLOGI, 2016, 78 (11): : 141 - 148
  • [50] Monotonicity Preserving Splines Using Rational Cubic Timmer Interpolation
    Zakaria, Wan Zafira Ezza Wan
    Alimin, Nur Safiyah
    Ali, Jamaludin Md
    [J]. PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870