Shape preserving rational cubic fractal interpolation function

被引:9
|
作者
Balasubramani, N. [1 ]
机构
[1] IIT Guwahati, Dept Math, Gauhati 781039, India
关键词
Iterated function system; Fractal interpolation function; Positivity; Monotonicity; Convexity; QUADRATIC SPLINE INTERPOLATION; MONOTONICITY; CONVEXITY; VISUALIZATION;
D O I
10.1016/j.cam.2017.01.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new type of C-1 Fractal Interpolation Function (FIF) is developed using the Iterated Function System (IFS) which contains the rational spline. The numerator of this rational spline contains cubic polynomial and the denominator of the rational spline contains quadratic polynomial. We find uniform error bound between the original function which belongs to the class C-2 and the FIF. We described suitable conditions on scaling factors and shape parameters such that they preserve the shape properties which are inherited in the data. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:277 / 295
页数:19
相关论文
共 50 条
  • [1] Shape preserving rational cubic trigonometric fractal interpolation functions
    Tyada, K. R.
    Chand, A. K. B.
    Sajid, M.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 : 866 - 891
  • [2] CONSTRAINED SHAPE PRESERVING RATIONAL CUBIC FRACTAL INTERPOLATION FUNCTIONS
    Chand, A. K. B.
    Tyada, K. R.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (01) : 75 - 105
  • [3] Preserving convexity through rational cubic spline fractal interpolation function
    Viswanathan, P.
    Chand, A. K. B.
    Agarwal, R. P.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 263 : 262 - 276
  • [4] Shape preserving α-fractal rational cubic splines
    Balasubramani, N.
    Prasad, M. Guru Prem
    Natesan, S.
    [J]. CALCOLO, 2020, 57 (03)
  • [5] Shape Preserving Interpolation Using Rational Cubic Ball Function and Its Application in Image Interpolation
    Karim, Samsul Ariffin Abdul
    Saaban, Azizan
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [6] Positivity Preserving Rational Cubic Trigonometric Fractal Interpolation Functions
    Chand, A. K. B.
    Tyada, K. R.
    [J]. MATHEMATICS AND COMPUTING, 2015, 139 : 187 - 202
  • [7] Shape Preserving Rational Cubic Ball Interpolation for Positive Data
    Jaafar, Wan Nurhadani Wan
    Piah, Abd Rahni Mat
    Abbas, Muhammad
    [J]. PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 325 - 330
  • [8] Shape preserving constrained and monotonic rational quintic fractal interpolation functions
    A. K. B. Chand
    K. R. Tyada
    [J]. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2018, 10 (1) : 15 - 33
  • [9] Shape preserving constrained and monotonic rational quintic fractal interpolation functions
    Chand, A. K. B.
    Tyada, K. R.
    [J]. INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2018, 10 (01) : 15 - 33
  • [10] Interactive shape preserving interpolation by curvature continuous rational cubic splines
    Seymour, C
    Unsworth, K
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 102 (01) : 87 - 117