Classification using a hierarchical Bayesian approach

被引:0
|
作者
Mathis, C [1 ]
Breuel, T [1 ]
机构
[1] Xerox PARC, Document Image Decoding Grp, Palo Alto, CA 94304 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A key problem faced by classifiers is coping with styles not represented in the training set. We present an application of hierarchical Bayesian methods to the problem of recognizing degraded printed characters in a variety of fonts. The proposed method works by using training data of various styles and classes to compute prior distributions on the parameters for the class conditional distributions. For classification, the parameters for the actual class conditional distributions are fitted using an EM algorithm. The advantage of hierarchical Bayesian methods is motivated with a theoretical example. Severalfold increases in classification performance relative to style-oblivious and style-conscious are demonstrated on a multifont OCR task.
引用
收藏
页码:103 / 106
页数:4
相关论文
共 50 条
  • [41] A Bayesian Hierarchical Model for Classification with Selection of Functional Predictors
    Zhu, Hongxiao
    Vannucci, Marina
    Cox, Dennis D.
    BIOMETRICS, 2010, 66 (02) : 463 - 473
  • [42] A unified Bayesian hierarchical model for MRI tissue classification
    Feng, Dai
    Liang, Dong
    Tierney, Luke
    STATISTICS IN MEDICINE, 2014, 33 (08) : 1349 - 1368
  • [43] Text Classification Based on a Novel Bayesian Hierarchical Model
    Zhou, Shibin
    Li, Kan
    Liu, Yushu
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2008, : 218 - 221
  • [44] A hierarchical Bayesian model for the ecological status classification of lagoons
    Arima, Serena
    Basset, Alberto
    Lasinio, Giovanna Jona
    Pollice, Alessio
    Rosati, Ilaria
    ECOLOGICAL MODELLING, 2013, 263 : 187 - 195
  • [45] Bayesian and convolutional networks for hierarchical morphological classification of galaxies
    Serrano-Perez, Jonathan
    Hernandez, Raquel Diaz
    Sucar, L. Enrique
    EXPERIMENTAL ASTRONOMY, 2024, 58 (02)
  • [46] Extraction of Hierarchical Behavior Patterns Using a Non-parametric Bayesian Approach
    Briones, Jeric
    Kubo, Takatomi
    Ikeda, Kazushi
    FRONTIERS IN COMPUTER SCIENCE, 2020, 2
  • [47] Gas turbine engine prognostics using Bayesian hierarchical models: A variational approach
    Zaidan, Martha A.
    Mills, Andrew R.
    Harrison, Robert F.
    Fleming, Peter J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 70-71 : 120 - 140
  • [48] Adding risk in measuring customer value using bivariate hierarchical Bayesian approach
    Wang Hai-wei
    Jiang Ming-hui
    Wang Ya-lin
    PROCEEDINGS OF THE 2006 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING (13TH), VOLS 1-3, 2006, : 89 - 93
  • [49] Statistical Modeling of Within-Laboratory Precision Using a Hierarchical Bayesian Approach
    Miyake, Daisuke
    Kanaya, Shigehiko
    Ono, Naoaki
    JOURNAL OF AOAC INTERNATIONAL, 2024, 107 (06) : 960 - 970
  • [50] Modeling Age and Nest-Specific Survival Using a Hierarchical Bayesian Approach
    Cao, Jing
    He, Chong Z.
    Wells, Kimberly M. Suedkamp
    Millspaugh, Joshua J.
    Ryan, Mark R.
    BIOMETRICS, 2009, 65 (04) : 1052 - 1062