Classification using a hierarchical Bayesian approach

被引:0
|
作者
Mathis, C [1 ]
Breuel, T [1 ]
机构
[1] Xerox PARC, Document Image Decoding Grp, Palo Alto, CA 94304 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A key problem faced by classifiers is coping with styles not represented in the training set. We present an application of hierarchical Bayesian methods to the problem of recognizing degraded printed characters in a variety of fonts. The proposed method works by using training data of various styles and classes to compute prior distributions on the parameters for the class conditional distributions. For classification, the parameters for the actual class conditional distributions are fitted using an EM algorithm. The advantage of hierarchical Bayesian methods is motivated with a theoretical example. Severalfold increases in classification performance relative to style-oblivious and style-conscious are demonstrated on a multifont OCR task.
引用
收藏
页码:103 / 106
页数:4
相关论文
共 50 条
  • [31] Confidence in classification: A Bayesian approach
    Krzanowski, Wojtek J.
    Bailey, Trevor C.
    Partridge, Derek
    Fieldsend, Jonathan E.
    Everson, Richard M.
    Schetinin, Vitaly
    JOURNAL OF CLASSIFICATION, 2006, 23 (02) : 199 - 220
  • [32] A connectionist approach in Bayesian classification
    State, Luminita
    Cocianu, Catalina
    Vlamos, Panayiotis
    Stefanescu, Viorica
    ICEIS 2007: PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS: ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS, 2007, : 185 - 190
  • [33] Sparse Bayesian approach to classification
    Chen, ZX
    Tang, H
    2005 IEEE Networking, Sensing and Control Proceedings, 2005, : 914 - 917
  • [34] Confidence in Classification: A Bayesian Approach
    Wojtek J. Krzanowski
    Trevor C. Bailey
    Derek Partridge
    Jonathan E. Fieldsend
    Richard M. Everson
    Vitaly Schetinin
    Journal of Classification, 2006, 23 : 199 - 220
  • [35] Plant leaf classification using multiple descriptors: A hierarchical approach
    Chaki, Jyotismita
    Parekh, Ranjan
    Bhattacharya, Samar
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2020, 32 (10) : 1158 - 1172
  • [36] Affective - Hierarchical Classification of Text - An Approach Using NLP Toolkit
    Aathithyan, S. Seshathri
    Sriram, M. V.
    Prasanna, S.
    Venkatesan, R.
    PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON CIRCUIT, POWER AND COMPUTING TECHNOLOGIES (ICCPCT 2016), 2016,
  • [37] A Novel Approach for Climate Classification Using Agglomerative Hierarchical Clustering
    Uppalapati, Sanketh
    Garg, Vishal
    Pudi, Vikram
    Mathur, Jyotirmay
    Gupta, Raj
    Bhatia, Aviruch
    ENERGY INFORMATICS, EI.A 2023, PT I, 2024, 14467 : 152 - 167
  • [38] A unified approach to hierarchical classification
    Kil, DH
    Shin, FB
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 3430 - 3433
  • [39] A hierarchical approach to multimodal classification
    Skowron, A
    Wang, H
    Wojna, A
    Bazan, J
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, PT 2, PROCEEDINGS, 2005, 3642 : 119 - 127
  • [40] Analysis of Electrochemical Impedance Spectroscopy Data Using the Distribution of Relaxation Times: A Bayesian and Hierarchical Bayesian Approach
    Ciucci, Francesco
    Chen, Chi
    ELECTROCHIMICA ACTA, 2015, 167 : 439 - 454