Penalized Lq-likelihood estimators and variable selection in linear regression models

被引:2
|
作者
Hu, Hongchang [1 ]
Zeng, Zhen [2 ]
机构
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Hubei, Peoples R China
[2] Nanjin Univ Finana & Econ, Sch Appl Math, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear regression models; penalized Lq-likelihood estimators; oracle properties; influence function; SPARSE;
D O I
10.1080/03610926.2020.1850794
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a linear regression model yi = x(i)(T) beta + e(i), i = 1,2,..., n, where {e(i)} are independent identically distributed (iid) random variables with zero mean and known variance sigma(2). Based on the maximum Lq-likelihood estimator (MLqE) and the penalized likelihood estimator (PLE), we introduce a new parametric estimator which is called penalized Lq-likelihood estimator (PLqE). We investigate its Oracle properties and influence function. Simulation results support the validity of our approach. Furthermore, it is shown that the PLqE is robust, while the PLE is not.
引用
收藏
页码:5957 / 5970
页数:14
相关论文
共 50 条
  • [31] Variable Selection in Joint Mean and Dispersion Models via Double Penalized Likelihood
    Charalambous C.
    Pan J.
    Tranmer M.
    [J]. Sankhya B, 2014, 76 (2) : 276 - 304
  • [32] Variable selection and transformation in linear regression models
    Yeo, IK
    [J]. STATISTICS & PROBABILITY LETTERS, 2005, 72 (03) : 219 - 226
  • [33] Confidence sets based on penalized maximum likelihood estimators in Gaussian regression
    Poetscher, Benedikt M.
    Schneider, Ulrike
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 334 - 360
  • [34] Penalized variable selection in competing risks regression
    Fu, Zhixuan
    Parikh, Chirag R.
    Zhou, Bingqing
    [J]. LIFETIME DATA ANALYSIS, 2017, 23 (03) : 353 - 376
  • [35] Penalized variable selection in competing risks regression
    Zhixuan Fu
    Chirag R. Parikh
    Bingqing Zhou
    [J]. Lifetime Data Analysis, 2017, 23 : 353 - 376
  • [36] A fuzzy penalized regression model with variable selection
    Kashani, M.
    Arashi, M.
    Rabiei, M. R.
    D'Urso, P.
    De Giovanni, L.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 175
  • [37] PENALIZED MAXIMUM LIKELIHOOD ESTIMATION AND VARIABLE SELECTION IN GEOSTATISTICS
    Chu, Tingjin
    Zhu, Jun
    Wang, Haonan
    [J]. ANNALS OF STATISTICS, 2011, 39 (05): : 2607 - 2625
  • [38] Variable Selection via Generalized SELO-Penalized Cox Regression Models
    Shi Yueyong
    Xu Deyi
    Cao Yongxiu
    Jiao Yuling
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2019, 32 (02) : 709 - 736
  • [39] Variable Selection via Generalized SELO-Penalized Cox Regression Models
    SHI Yueyong
    XU Deyi
    CAO Yongxiu
    JIAO Yuling
    [J]. Journal of Systems Science & Complexity, 2019, 32 (02) : 709 - 736
  • [40] Maximum likelihood estimators in linear regression models with Ornstein-Uhlenbeck process
    Hu, Hongchang
    Pan, Xiong
    Xu, Lifeng
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,