Variable Selection via Generalized SELO-Penalized Cox Regression Models

被引:3
|
作者
Shi Yueyong [1 ,2 ]
Xu Deyi [1 ,2 ]
Cao Yongxiu [3 ]
Jiao Yuling [3 ]
机构
[1] China Univ Geosci, Sch Econ & Management, Wuhan 430074, Hubei, Peoples R China
[2] China Univ Geosci, Ctr Resources & Environm Econ Res, Wuhan 430074, Hubei, Peoples R China
[3] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Continuation; Cox models; generalized SELO; modified BIC; penalized likelihood; smoothing quasi-Newton;
D O I
10.1007/s11424-018-7276-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The seamless-L-0 (SELO) penalty is a smooth function that very closely resembles the L0 penalty, which has been demonstrated theoretically and practically to be effective in nonconvex penalization for variable selection. In this paper, the authors first generalize the SELO penalty to a class of penalties retaining good features of SELO, and then develop variable selection and parameter estimation in Cox models using the proposed generalized SELO (GSELO) penalized log partial likelihood (PPL) approach. The authors show that the GSELO-PPL procedure possesses the oracle property with a diverging number of predictors under certain mild, interpretable regularity conditions. The entire path of GSELO-PPL estimates can be efficiently computed through a smoothing quasi-Newton (SQN) with continuation algorithm. The authors propose a consistent modified BIC (MBIC) tuning parameter selector for GSELO-PPL, and show that under some regularity conditions, the GSELOPPL- MBIC procedure consistently identifies the true model. Simulation studies and real data analysis are conducted to evaluate the finite sample performance of the proposed method.
引用
收藏
页码:709 / 736
页数:28
相关论文
共 50 条
  • [1] Variable Selection via Generalized SELO-Penalized Cox Regression Models
    SHI Yueyong
    XU Deyi
    CAO Yongxiu
    JIAO Yuling
    [J]. Journal of Systems Science & Complexity, 2019, 32 (02) : 709 - 736
  • [2] Variable Selection via Generalized SELO-Penalized Cox Regression Models
    Yueyong Shi
    Deyi Xu
    Yongxiu Cao
    Yuling Jiao
    [J]. Journal of Systems Science and Complexity, 2019, 32 : 709 - 736
  • [3] Variable selection via generalized SELO-penalized linear regression models
    SHI Yue-yong
    CAO Yong-xiu
    YU Ji-chang
    JIAO Yu-ling
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2018, 33 (02) : 145 - 162
  • [4] Variable selection via generalized SELO-penalized linear regression models
    Shi Yue-yong
    Cao Yong-xiu
    Yu Ji-chang
    Jiao Yu-ling
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2018, 33 (02) : 145 - 162
  • [5] Variable selection via generalized SELO-penalized linear regression models
    Yue-yong Shi
    Yong-xiu Cao
    Ji-chang Yu
    Yu-ling Jiao
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2018, 33 : 145 - 162
  • [6] Finite Mixture of Generalized Semiparametric Models: Variable Selection via Penalized Estimation
    Eskandari, Farzad
    Ormoz, Ehsan
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (10) : 3744 - 3759
  • [7] Robust variable selection via penalized MT-estimator in generalized linear models
    Salamwade, R. L.
    Sakate, D. M.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (22) : 8053 - 8065
  • [8] PENALIZED VARIABLE SELECTION PROCEDURE FOR COX MODELS WITH SEMIPARAMETRIC RELATIVE RISK
    Du, Pang
    Ma, Shuangge
    Liang, Hua
    [J]. ANNALS OF STATISTICS, 2010, 38 (04): : 2092 - 2117
  • [9] Penalized estimating functions and variable selection in semiparametric regression models
    Johnson, Brent A.
    Lin, D. Y.
    Zeng, Donglin
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 672 - 680
  • [10] Variable selection in spatial regression via penalized least squares
    Wang, Haonan
    Zhu, Jun
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (04): : 607 - 624