Penalized estimating functions and variable selection in semiparametric regression models

被引:128
|
作者
Johnson, Brent A. [1 ]
Lin, D. Y. [2 ]
Zeng, Donglin [2 ]
机构
[1] Emory Univ, Dept Biostat, Atlanta, GA 30322 USA
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
accelerated failure time model; Buckley-James estimator; censoring; least absolute shrinkage and selection operator; least squares; linear regression; missing data; smoothly clipped absolute deviation;
D O I
10.1198/016214508000000184
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a general strategy for variable selection in semiparametric regression models by penalizing appropriate estimating functions. Important applications include semiparametric linear regression with censored responses and semiparametric regression with missing predictors. Unlike the existing penalized maximum likelihood estimators, the proposed penalized estimating functions may not pertain to the derivatives of any objective functions and may be discrete in the regression coefficients. We establish a general asymptotic theory for penalized estimating functions and present suitable numerical algorithms to implement the proposed estimators. In addition, we develop a resampling technique to estimate the variances of the estimated regression coefficients when the asymptotic variances cannot be evaluated directly. Simulation studies demonstrate that the proposed methods perform well in variable selection and variance estimation. We illustrate our methods using data from the Paul Coverdell Stroke Registry.
引用
收藏
页码:672 / 680
页数:9
相关论文
共 50 条
  • [1] Penalized profiled semiparametric estimating functions
    Wang, Lan
    Kai, Bo
    Heuchenne, Cedric
    Tsai, Chih-Ling
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 2656 - 2682
  • [2] Variable Selection for Semiparametric Isotonic Regression Models
    Du, Jiang
    Zhang, Zhongzhan
    Xie, Tianfa
    [J]. NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 525 - 532
  • [3] PENALIZED VARIABLE SELECTION PROCEDURE FOR COX MODELS WITH SEMIPARAMETRIC RELATIVE RISK
    Du, Pang
    Ma, Shuangge
    Liang, Hua
    [J]. ANNALS OF STATISTICS, 2010, 38 (04): : 2092 - 2117
  • [4] Ensemble estimation and variable selection with semiparametric regression models
    Shin, Sunyoung
    Liu, Yufeng
    Cole, Stephen R.
    Fine, Jason P.
    [J]. BIOMETRIKA, 2020, 107 (02) : 433 - 448
  • [5] Variable selection for semiparametric regression models with iterated penalisation
    Dai, Ying
    Ma, Shuangge
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (02) : 283 - 298
  • [6] Finite Mixture of Generalized Semiparametric Models: Variable Selection via Penalized Estimation
    Eskandari, Farzad
    Ormoz, Ehsan
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (10) : 3744 - 3759
  • [7] PENALIZED LIKELIHOOD FOR GENERAL SEMIPARAMETRIC REGRESSION-MODELS
    GREEN, PJ
    [J]. INTERNATIONAL STATISTICAL REVIEW, 1987, 55 (03) : 245 - 259
  • [8] Variable selection in semiparametric regression modeling
    Li, Runze
    Liang, Hua
    [J]. ANNALS OF STATISTICS, 2008, 36 (01): : 261 - 286
  • [9] Penalized variable selection in competing risks regression
    Fu, Zhixuan
    Parikh, Chirag R.
    Zhou, Bingqing
    [J]. LIFETIME DATA ANALYSIS, 2017, 23 (03) : 353 - 376
  • [10] Estimating functions in semiparametric statistical models
    Amari, S
    [J]. SELECTED PROCEEDINGS OF THE SYMPOSIUM ON ESTIMATING FUNCTIONS, 1997, 32 : 65 - 81