Penalized profiled semiparametric estimating functions

被引:2
|
作者
Wang, Lan [1 ]
Kai, Bo [2 ]
Heuchenne, Cedric [3 ]
Tsai, Chih-Ling [4 ,5 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Coll Charleston, Dept Math, Charleston, SC 29424 USA
[3] Univ Liege, HEC Management Sch, B-4000 Liege, Belgium
[4] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
[5] Natl Taiwan Univ, Coll Management, Taipei, Taiwan
来源
关键词
Profiled semiparametric estimating functions; nonconvex penalty; non-smooth estimating functions; PARTIALLY LINEAR-MODELS; VARIABLE SELECTION; QUANTILE REGRESSION; LIKELIHOOD; SHRINKAGE;
D O I
10.1214/13-EJS859
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a general class of penalized profiled semiparametric estimating functions which is applicable to a wide range of statistical models, including quantile regression, survival analysis, and missing data, among others. It is noteworthy that the estimating function can be non-smooth in the parametric and/or nonparametric components. Without imposing a specific functional structure on the nonparametric component or assuming a conditional distribution of the response variable for the given covariates, we establish a unified theory which demonstrates that the resulting estimator for the parametric component possesses the oracle property. Monte Carlo studies indicate that the proposed estimator performs well. An empirical example is also presented to illustrate the usefulness of the new method.
引用
收藏
页码:2656 / 2682
页数:27
相关论文
共 50 条
  • [1] Penalized estimating functions and variable selection in semiparametric regression models
    Johnson, Brent A.
    Lin, D. Y.
    Zeng, Donglin
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 672 - 680
  • [2] Estimating functions in semiparametric statistical models
    Amari, S
    [J]. SELECTED PROCEEDINGS OF THE SYMPOSIUM ON ESTIMATING FUNCTIONS, 1997, 32 : 65 - 81
  • [3] Semiparametric confidence intervals based on estimating functions
    Cook, RJ
    Godambe, VP
    Thompson, ME
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (10) : 1701 - 1708
  • [4] Penalized semiparametric density estimation
    Yang, Ying
    [J]. STATISTICS AND COMPUTING, 2009, 19 (04) : 355 - 366
  • [5] Penalized semiparametric density estimation
    Ying Yang
    [J]. Statistics and Computing, 2009, 19
  • [6] Estimating covariance matrices using estimating functions in nonparametric and semiparametric regression
    Carroll, RJ
    Iturria, SJ
    Gutierrez, RG
    [J]. SELECTED PROCEEDINGS OF THE SYMPOSIUM ON ESTIMATING FUNCTIONS, 1997, 32 : 399 - 404
  • [7] Modeling financial durations using penalized estimating functions
    Zhang, Yaohua
    Zou, Jian
    Ravishanker, Nalini
    Thavaneswaran, Aerambamoorthy
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 131 : 145 - 158
  • [8] Estimating functions and derivatives via adaptive penalized splines
    Yang, Lianqiang
    Ding, Mengzhen
    Hong, Yongmiao
    Wang, Xuejun
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (07) : 2054 - 2071
  • [9] Estimating the interest rate term structure of corporate debt with a semiparametric penalized spline model
    Jarrow, R
    Ruppert, D
    Yu, Y
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (465) : 57 - 66
  • [10] Semiparametric penalized quadratic inference functions for longitudinal data in ultra-high dimensions
    Green, Brittany
    Lian, Heng
    Yu, Yan
    Zu, Tianhai
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 196