Penalized profiled semiparametric estimating functions

被引:2
|
作者
Wang, Lan [1 ]
Kai, Bo [2 ]
Heuchenne, Cedric [3 ]
Tsai, Chih-Ling [4 ,5 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Coll Charleston, Dept Math, Charleston, SC 29424 USA
[3] Univ Liege, HEC Management Sch, B-4000 Liege, Belgium
[4] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
[5] Natl Taiwan Univ, Coll Management, Taipei, Taiwan
来源
关键词
Profiled semiparametric estimating functions; nonconvex penalty; non-smooth estimating functions; PARTIALLY LINEAR-MODELS; VARIABLE SELECTION; QUANTILE REGRESSION; LIKELIHOOD; SHRINKAGE;
D O I
10.1214/13-EJS859
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a general class of penalized profiled semiparametric estimating functions which is applicable to a wide range of statistical models, including quantile regression, survival analysis, and missing data, among others. It is noteworthy that the estimating function can be non-smooth in the parametric and/or nonparametric components. Without imposing a specific functional structure on the nonparametric component or assuming a conditional distribution of the response variable for the given covariates, we establish a unified theory which demonstrates that the resulting estimator for the parametric component possesses the oracle property. Monte Carlo studies indicate that the proposed estimator performs well. An empirical example is also presented to illustrate the usefulness of the new method.
引用
收藏
页码:2656 / 2682
页数:27
相关论文
共 50 条
  • [21] Semiparametric stochastic volatility modelling using penalized splines
    Roland Langrock
    Théo Michelot
    Alexander Sohn
    Thomas Kneib
    [J]. Computational Statistics, 2015, 30 : 517 - 537
  • [22] A robust penalized estimation for identification in semiparametric additive models
    Yang, Jing
    Yang, Hu
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 110 : 268 - 277
  • [23] A penalized robust semiparametric approach for gene-environment interactions
    Wu, Cen
    Shi, Xingjie
    Cui, Yuehua
    Ma, Shuangge
    [J]. STATISTICS IN MEDICINE, 2015, 34 (30) : 4016 - 4030
  • [24] Coordinate Descent Methods for the Penalized Semiparametric Additive Hazards Model
    Gorst-Rasmussen, Anders
    Scheike, Thomas H.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2012, 47 (09): : 1 - 17
  • [25] Semiparametric penalized generalized additive models for environmental research and epidemiology
    Schimek, Michael G.
    [J]. ENVIRONMETRICS, 2009, 20 (06) : 699 - 717
  • [26] Penalized integrative semiparametric interaction analysis for multiple genetic datasets
    Li, Yang
    Li, Rong
    Lin, Cunjie
    Qin, Yichen
    Ma, Shuangge
    [J]. STATISTICS IN MEDICINE, 2019, 38 (17) : 3221 - 3242
  • [27] Penalized empirical likelihood for semiparametric models with a diverging number of parameters
    Fang, Jianglin
    Liu, Wanrong
    Lu, Xuewen
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 186 : 42 - 57
  • [28] Penalized maximum likelihood and semiparametric second-order efficiency
    Dalalyan, AS
    Golubev, GK
    Tsybakov, AB
    [J]. ANNALS OF STATISTICS, 2006, 34 (01): : 169 - 201
  • [29] Penalized semiparametric Cox regression model on XGBoost and random survival forests
    Wang, Yating
    Su, Jinxia
    Zhao, Xuejing
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (07) : 3095 - 3103
  • [30] Estimating effort function with semiparametric model
    Linden, M
    [J]. COMPUTATIONAL STATISTICS, 1999, 14 (04) : 501 - 513