Penalized integrative semiparametric interaction analysis for multiple genetic datasets

被引:4
|
作者
Li, Yang [1 ,2 ,3 ]
Li, Rong [2 ,3 ]
Lin, Cunjie [1 ,2 ,3 ]
Qin, Yichen [4 ]
Ma, Shuangge [2 ,5 ]
机构
[1] Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
[2] Renmin Univ China, Sch Stat, Beijing 100872, Peoples R China
[3] Renmin Univ China, Ctr Stat Consulting, Beijing, Peoples R China
[4] Univ Cincinnati, Dept Operat Business Analyt & Informat Syst, Cincinnati, OH USA
[5] Yale Univ, Dept Biostat, New Haven, CT 06520 USA
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
Gene-gene interaction analysis; hierarchical constraint; integrative analysis; semiparametric model; VARIABLE SELECTION; PROMOTING SIMILARITY; SPARSITY STRUCTURES; LUNG-CANCER; MODEL; EXPRESSION; BIOMARKERS; REGRESSION; LASSO; AGE;
D O I
10.1002/sim.8172
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we consider a semiparametric additive partially linear interaction model for the integrative analysis of multiple genetic datasets. The goals are to identify important genetic predictors and gene-gene interactions and to estimate the nonparametric functions that describe the environmental effects at the same time. To find the similarities and differences of the genetic effects across different datasets, we impose a group structure on the regression coefficients matrix under the homogeneity assumption, ie, models for different datasets share the same sparsity structure, but the coefficients may differ across datasets. We develop an iterative approach to estimate the parameters of main effects, interactions and nonparametric functions, where a reparametrization of interaction parameters is implemented to meet the strong hierarchy assumption. We demonstrate the advantages of the proposed method in identification, estimation, and prediction in a series of numerical studies. We also apply the proposed method to the Skin Cutaneous Melanoma data and the lung cancer data from the Cancer Genome Atlas.
引用
收藏
页码:3221 / 3242
页数:22
相关论文
共 50 条
  • [1] Sparse group penalized integrative analysis of multiple cancer prognosis datasets
    Liu, Jin
    Huang, Jian
    Xie, Yang
    Ma, Shuangge
    [J]. GENETICS RESEARCH, 2013, 95 (2-3) : 68 - 77
  • [2] A penalized integrative deep neural network for variable selection among multiple omics datasets
    Yang Li
    Xiaonan Ren
    Haochen Yu
    Tao Sun
    Shuangge Ma
    [J]. Quantitative Biology., 2024, 12 (03) - 323
  • [3] A penalized integrative deep neural network for variable selection among multiple omics datasets
    Li, Yang
    Ren, Xiaonan
    Yu, Haochen
    Sun, Tao
    Ma, Shuangge
    [J]. QUANTITATIVE BIOLOGY, 2024, 12 (03) : 313 - 323
  • [4] Integrative classification and analysis of multiple arrayCGH datasets with probe alignment
    Ze Tian
    Rui Kuang
    [J]. BIOINFORMATICS, 2010, 26 (18) : 2313 - 2320
  • [5] Prior information-assisted integrative analysis of multiple datasets
    Wang, Feifei
    Liang, Dongzuo
    Li, Yang
    Ma, Shuangge
    [J]. BIOINFORMATICS, 2023, 39 (08)
  • [6] particleMDI: A Julia Package for the Integrative Cluster Analysis of Multiple Datasets
    Cunningham, Nathan
    Griffin, Jim E.
    Wild, David L.
    Lee, Anthony
    [J]. BAYESIAN STATISTICS AND NEW GENERATIONS, BAYSM 2018, 2019, 296 : 65 - 74
  • [7] Semiparametric integrative interaction analysis for non-small-cell lung cancer
    Li Yang
    Wang Fan
    Li Rong
    Sun Yifan
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (10) : 2865 - 2880
  • [8] Integrative Analysis of Multiple Cancer Prognosis Datasets Under the Heterogeneity Model
    Liu, Jin
    Huang, Jian
    Ma, Shuangge
    [J]. TOPICS IN APPLIED STATISTICS, 2013, 55 : 257 - 269
  • [9] Identification of mitochondrial disease genes through integrative analysis of multiple datasets
    Aiyar, Raeka S.
    Gagneur, Julien
    Steinmetz, Lars M.
    [J]. METHODS, 2008, 46 (04) : 248 - 255
  • [10] Integrative analysis of multiple cancer genomic datasets under the heterogeneity model
    Liu, Jin
    Huang, Jian
    Ma, Shuangge
    [J]. STATISTICS IN MEDICINE, 2013, 32 (20) : 3509 - 3521