Penalized integrative semiparametric interaction analysis for multiple genetic datasets

被引:4
|
作者
Li, Yang [1 ,2 ,3 ]
Li, Rong [2 ,3 ]
Lin, Cunjie [1 ,2 ,3 ]
Qin, Yichen [4 ]
Ma, Shuangge [2 ,5 ]
机构
[1] Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
[2] Renmin Univ China, Sch Stat, Beijing 100872, Peoples R China
[3] Renmin Univ China, Ctr Stat Consulting, Beijing, Peoples R China
[4] Univ Cincinnati, Dept Operat Business Analyt & Informat Syst, Cincinnati, OH USA
[5] Yale Univ, Dept Biostat, New Haven, CT 06520 USA
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
Gene-gene interaction analysis; hierarchical constraint; integrative analysis; semiparametric model; VARIABLE SELECTION; PROMOTING SIMILARITY; SPARSITY STRUCTURES; LUNG-CANCER; MODEL; EXPRESSION; BIOMARKERS; REGRESSION; LASSO; AGE;
D O I
10.1002/sim.8172
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we consider a semiparametric additive partially linear interaction model for the integrative analysis of multiple genetic datasets. The goals are to identify important genetic predictors and gene-gene interactions and to estimate the nonparametric functions that describe the environmental effects at the same time. To find the similarities and differences of the genetic effects across different datasets, we impose a group structure on the regression coefficients matrix under the homogeneity assumption, ie, models for different datasets share the same sparsity structure, but the coefficients may differ across datasets. We develop an iterative approach to estimate the parameters of main effects, interactions and nonparametric functions, where a reparametrization of interaction parameters is implemented to meet the strong hierarchy assumption. We demonstrate the advantages of the proposed method in identification, estimation, and prediction in a series of numerical studies. We also apply the proposed method to the Skin Cutaneous Melanoma data and the lung cancer data from the Cancer Genome Atlas.
引用
收藏
页码:3221 / 3242
页数:22
相关论文
共 50 条
  • [41] Genetic and Genomic Analysis in Livestock with Increasing Datasets
    Lourenco, Daniela
    Tsuruta, Shogo
    Masuda, Yutaka
    Misztal, Ignacy
    [J]. JOURNAL OF ANIMAL SCIENCE, 2020, 98 : 137 - 137
  • [42] The Analysis of Microarray Datasets Using a Genetic Programming
    Xu, Chun-Gui
    Liu, Kun-Hong
    Huang, De-Shuang
    [J]. CIBCB: 2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2009, : 176 - 181
  • [43] Analysis of multiple diverse phenotypes via semiparametric canonical correlation analysis
    Agniel, Denis
    Cai, Tianxi
    [J]. BIOMETRICS, 2017, 73 (04) : 1254 - 1265
  • [44] Cervical Cancer Stages, Human Papillomavirus Integration, and Malignant Genetic Mutations: Integrative Analysis of Datasets from Four Different Cohorts
    Mohammed, Foziya Ahmed
    Tune, Kula Kekeba
    Jett, Marti
    Muhie, Seid
    Wong, David
    Bekkers, Ruud L. M.
    [J]. CANCERS, 2023, 15 (23)
  • [45] Integrative analysis of the common genetic characteristics in ovarian cancer stem cells sorted by multiple approaches
    Zhang, Xiaoxiao
    Su, Yue
    Wu, Xue
    Xiao, Rourou
    Wu, Yifan
    Yang, Bin
    Wang, Zhen
    Guo, Lili
    Kang, Xiaoyan
    Wang, Changyu
    [J]. JOURNAL OF OVARIAN RESEARCH, 2020, 13 (01)
  • [46] Integrative analysis of the common genetic characteristics in ovarian cancer stem cells sorted by multiple approaches
    Xiaoxiao Zhang
    Yue Su
    Xue Wu
    Rourou Xiao
    Yifan Wu
    Bin Yang
    Zhen Wang
    Lili Guo
    Xiaoyan Kang
    Changyu Wang
    [J]. Journal of Ovarian Research, 13
  • [47] Bayesian Semiparametric Meta-Analysis for Genetic Association Studies
    De Iorio, Maria
    Newcombe, Paul J.
    Tachmazidou, Ioanna
    Verzilli, Claudio J.
    Whittaker, John C.
    [J]. GENETIC EPIDEMIOLOGY, 2011, 35 (05) : 333 - 340
  • [49] Semiparametric transformation models for multiple continuous biomarkers in ROC analysis
    Kim, Eunhee
    Zeng, Donglin
    Zhou, Xiao-Hua
    [J]. BIOMETRICAL JOURNAL, 2015, 57 (05) : 808 - 833
  • [50] Revealing genomic heterogeneity and commonality: A penalized integrative analysis approach accounting for the adjacency structure of measurements
    Wang, Xindi
    Jiang, Yu
    Sun, Yifan
    [J]. GENETIC EPIDEMIOLOGY, 2024, 48 (03) : 114 - 140