q-Deformed kink solutions

被引:1
|
作者
De Lima, A. F. [1 ]
De Lima Rodrigues, R.
机构
[1] Univ Fed Campina Grande, Unidade Acad Fis, BR-58109970 Campina Grande, Brazil
[2] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[3] Univ Fed Campina Grande, Unidade Acad Ciencias Exatas & Nat, BR-58900000 Cajazeiras, Brazil
来源
关键词
q-deformed kink; hyperbolic functions; kink solutions; fluctuations operator;
D O I
10.1142/S0217751X06031375
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The q-deformed kink of the lambda phi(4)-model is obtained via the normalizable ground state eigenfunction of a fluctuation operator associated with the q-deformed hyperbolic functions. From such a bosonic zero-mode the q-deformed potential in 1 + 1 dimensions is found, and we show that the q-deformed kink solution is a kink displaced away from the origin.
引用
收藏
页码:3605 / 3613
页数:9
相关论文
共 50 条
  • [41] On q-deformed creation operator a
    Yang, YP
    Zhao, CF
    Yu, ZR
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1997, 28 (02) : 191 - 194
  • [42] Q-DEFORMED JACOBI IDENTITY, Q-OSCILLATORS AND Q-DEFORMED INFINITE-DIMENSIONAL ALGEBRAS
    CHAICHIAN, M
    KULISH, P
    LUKIERSKI, J
    PHYSICS LETTERS B, 1990, 237 (3-4) : 401 - 406
  • [43] A q-deformed uncertainty relation
    Zhang, JZ
    PHYSICS LETTERS A, 1999, 262 (2-3) : 125 - 130
  • [44] On q-deformed hyponormal operators
    Ota, S
    MATHEMATISCHE NACHRICHTEN, 2003, 248 : 144 - 150
  • [45] A q-deformed nonlinear map
    Jaganathan, R
    Sinha, S
    PHYSICS LETTERS A, 2005, 338 (3-5) : 277 - 287
  • [46] Q-DEFORMED PAIRING VIBRATIONS
    SHARMA, SS
    SHARMA, NK
    PHYSICAL REVIEW C, 1994, 50 (05): : 2323 - 2331
  • [47] q-Deformed nonlinear maps
    Ramaswamy Jaganathan
    Sudeshna Sinha
    Pramana, 2005, 64 : 411 - 421
  • [48] On q-Deformed Real Numbers
    Morier-Genoud, Sophie
    Ovsienko, Valentin
    EXPERIMENTAL MATHEMATICS, 2022, 31 (02) : 652 - 660
  • [49] q-deformed Heisenberg algebras
    Wess, J
    GEOMETRY AND QUANTUM PHYSICS, 2000, 543 : 311 - 382
  • [50] Q-DEFORMED POINCARE ALGEBRA
    OGIEVETSKY, O
    SCHMIDKE, WB
    WESS, J
    ZUMINO, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (03) : 495 - 518