q-Deformed kink solutions

被引:1
|
作者
De Lima, A. F. [1 ]
De Lima Rodrigues, R.
机构
[1] Univ Fed Campina Grande, Unidade Acad Fis, BR-58109970 Campina Grande, Brazil
[2] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[3] Univ Fed Campina Grande, Unidade Acad Ciencias Exatas & Nat, BR-58900000 Cajazeiras, Brazil
来源
关键词
q-deformed kink; hyperbolic functions; kink solutions; fluctuations operator;
D O I
10.1142/S0217751X06031375
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The q-deformed kink of the lambda phi(4)-model is obtained via the normalizable ground state eigenfunction of a fluctuation operator associated with the q-deformed hyperbolic functions. From such a bosonic zero-mode the q-deformed potential in 1 + 1 dimensions is found, and we show that the q-deformed kink solution is a kink displaced away from the origin.
引用
收藏
页码:3605 / 3613
页数:9
相关论文
共 50 条
  • [31] q-deformed Circular Operators
    Schôichi Ôta
    Integral Equations and Operator Theory, 2006, 54 : 555 - 569
  • [32] q-deformed Quantum Mechanics with q-translation Symmetry and Supersymmetric q-deformed Quantum Mechanics
    Chung, Won Sang
    Hassanabadi, Hassan
    FEW-BODY SYSTEMS, 2020, 61 (01)
  • [33] A q-deformed quantum mechanics
    Zhang, JZ
    PHYSICS LETTERS B, 1998, 440 (1-2) : 66 - 68
  • [34] q-Deformed Loewner Evolution
    Marco Gherardi
    Alessandro Nigro
    Journal of Statistical Physics, 2013, 152 : 452 - 472
  • [35] The q-deformed virasoro Algebra
    Mebarki, N
    Aissaoui, H
    Boudine, A
    Maasmi, A
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1997, 47 (08) : 755 - 759
  • [36] Representation of the q-deformed oscillator
    Guichardet, A
    STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS (ANESTOC '98), 2000, : 97 - 99
  • [37] Classical q-deformed dynamics
    Lavagno, A
    Scarfone, AM
    Swamy, PN
    EUROPEAN PHYSICAL JOURNAL B, 2006, 50 (1-2): : 351 - 354
  • [38] Q-DEFORMED PARACOMMUTATION RELATIONS
    RALCHENKO, YV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (19): : L1155 - L1158
  • [39] q-Deformed nonlinear maps
    Jaganathan, R
    Sinha, S
    PRAMANA-JOURNAL OF PHYSICS, 2005, 64 (03): : 411 - 421
  • [40] q-Deformed Loewner Evolution
    Gherardi, Marco
    Nigro, Alessandro
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (03) : 452 - 472